Criterion-Robust Experimental Designs for the Quadratic Regression on a Square and a Cube

被引:2
|
作者
Filova, Lenka [1 ]
Harman, Radoslav [1 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Bratislava, Slovakia
关键词
E; INF; k; optimality; Maximin efficiency; Optimal design; Quadratic regression; 62K05; MULTIVARIATE POLYNOMIAL REGRESSION; EFFICIENT DESIGNS; DISCRIMINATION;
D O I
10.1080/03610926.2011.602491
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quadratic regression model on the q-dimensional cube [1, 1](q). The purpose of this article is to exhibit designs for the quadratic regression that are criterion robust in the sense of maximin efficiency within the class of all orthogonally invariant information functions. For the case of the standard quadratic regression on an interval (q=1), the asymptotic maximin efficient design is already known. In this article, we give the asymptotic maximin efficient design analytically for q=2, and numerically for q=3. Moreover, for both q=2 and q=3, we compute the measures of criterion-robustness of the D-, E-, and A-optimal designs, and propose criterion robust exact designs of sizes up to 44. Our results suggest that the A-optimal design is particularly efficiency-robust under all orthogonally invariant information functions.
引用
收藏
页码:2044 / 2055
页数:12
相关论文
共 50 条
  • [21] SOME MODEL ROBUST DESIGNS IN REGRESSION
    SACKS, J
    YLVISAKER, D
    ANNALS OF STATISTICS, 1984, 12 (04): : 1324 - 1348
  • [22] Robust designs for approximately polynomial regression
    Liu, S. X.
    Wiens, D. P.
    Journal of Statistical Planning and Inference, 64 (02):
  • [23] Robust sequential designs for nonlinear regression
    Sinha, S
    Wiens, DP
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (04): : 601 - 618
  • [24] Robust Designs for Poisson Regression Models
    McGree, James M.
    Eccleston, John A.
    TECHNOMETRICS, 2012, 54 (01) : 64 - 72
  • [25] A compound optimality criterion forD-efficient and separation-robust designs for the logistic regression model
    Park, Anson R.
    Mancenido, Michelle V.
    Montgomery, Douglas C.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (07) : 3066 - 3083
  • [26] D-OPTIMAL DESIGNS FOR QUADRATIC REGRESSION ON A HYPERCUBE
    USIKOV, NV
    INDUSTRIAL LABORATORY, 1978, 44 (07): : 967 - 971
  • [27] G-optimal exact designs for quadratic regression
    Imhof, Lorens A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 154 : 133 - 140
  • [28] Exact designs minimising the integrated variance in quadratic regression
    Imhof, L
    STATISTICS, 2000, 34 (02) : 103 - 115
  • [29] A NOTE ON QUADRATIC DESIGNS FOR NONLINEAR-REGRESSION MODELS
    OBRIEN, TE
    BIOMETRIKA, 1992, 79 (04) : 847 - 849
  • [30] D-Optimal designs for quadratic regression models
    van Berkum, EEM
    Pauwels, B
    Upperman, PM
    ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 189 - 195