Physiological noise reduction using volumetric functional magnetic resonance inverse imaging

被引:27
|
作者
Lin, Fa-Hsuan [2 ,3 ]
Nummenmaa, Aapo [3 ,4 ]
Witzel, Thomas [5 ]
Polimeni, Jonathan R. [3 ]
Zeffiro, Thomas A. [6 ]
Wang, Fu-Nien [1 ]
Belliveau, John W. [3 ]
机构
[1] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[2] Natl Taiwan Univ, Inst Biomed Engn, Taipei 10764, Taiwan
[3] MGH HST Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[4] Aalto Univ, Sch Sci & Technol, Dept Biomed Engn & Computat Sci, Espoo, Finland
[5] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[6] Massachusetts Gen Hosp, Neural Syst Grp, Charlestown, MA USA
基金
芬兰科学院; 美国国家卫生研究院;
关键词
event-related; inverse imaging; Inl; visual; MRI; fMRI; neuroimaging; inverse solution; SURFACE-BASED ANALYSIS; ECHO-PLANAR; BRAIN MOTION; FMRI; FLUCTUATIONS; REGISTRATION; ACQUISITION; SUPPRESSION; EIGENMODES; PARAMETERS;
D O I
10.1002/hbm.21403
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Physiological noise arising from a variety of sources can significantly degrade the detection of task-related activity in BOLD-contrast fMRI experiments. If whole head spatial coverage is desired, effective suppression of oscillatory physiological noise from cardiac and respiratory fluctuations is quite difficult without external monitoring, since traditional EPI acquisition methods cannot sample the signal rapidly enough to satisfy the Nyquist sampling theorem, leading to temporal aliasing of noise. Using a combination of high speed magnetic resonance inverse imaging (InI) and digital filtering, we demonstrate that it is possible to suppress cardiac and respiratory noise without auxiliary monitoring, while achieving whole head spatial coverage and reasonable spatial resolution. Our systematic study of the effects of different moving average (MA) digital filters demonstrates that a MA filter with a 2 s window can effectively reduce the variance in the hemodynamic baseline signal, thereby achieving 57%58% improvements in peak z-statistic values compared to unfiltered InI or spatially smoothed EPI data (FWHM = 8.6 mm). In conclusion, the high temporal sampling rates achievable with InI permit significant reductions in physiological noise using standard temporal filtering techniques that result in significant improvements in hemodynamic response estimation. Hum Brain Mapp 33:2815-2830, 2012. (c) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:2815 / 2830
页数:16
相关论文
共 50 条
  • [31] Detecting deception using functional magnetic resonance imaging
    Kozel, FA
    Johnson, KA
    Mu, QW
    Grenesko, EL
    Laken, SJ
    George, MS
    BIOLOGICAL PSYCHIATRY, 2005, 58 (08) : 605 - 613
  • [32] Pattern classification using functional magnetic resonance imaging
    Schwarzkopf, Dietrich Samuel
    Rees, Geraint
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2011, 2 (05) : 568 - 579
  • [33] ICTAL IMAGING USING FUNCTIONAL MAGNETIC-RESONANCE
    CONNELLY, A
    MAGNETIC RESONANCE IMAGING, 1995, 13 (08) : 1233 - 1237
  • [34] Active noise control using remotely placed sources: Application to magnetic resonance imaging noise and equivalence to the time reversal inverse filter
    Furlong, Trent S.
    Anderson, Brian E.
    Patchett, Brian D.
    Sommerfeldt, Scott D.
    APPLIED ACOUSTICS, 2021, 176
  • [35] A QUANTITATIVE PHYSIOLOGICAL MODEL OF BLOOD OXYGENATION FOR FUNCTIONAL MAGNETIC-RESONANCE-IMAGING
    HATHOUT, GM
    GAMBHIR, SS
    GOPI, RK
    KIRLEW, KAT
    CHOI, Y
    SO, G
    GOZAL, D
    HARPER, R
    LUFKIN, RB
    HAWKINS, R
    INVESTIGATIVE RADIOLOGY, 1995, 30 (11) : 669 - 682
  • [36] Physiological recordings: Basic concepts and implementation during functional magnetic resonance imaging
    Gray, Marcus A.
    Minati, Ludovico
    Harrison, Neil A.
    Gianaros, Peter J.
    Napadow, Vitaly
    Critchley, Hugo D.
    NEUROIMAGE, 2009, 47 (03) : 1105 - 1115
  • [37] Transients may occur in functional magnetic resonance imaging without physiological basis
    Renvall, Ville
    Hari, Riitta
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (48) : 20510 - 20514
  • [38] Automatic Classification of Signal and Noise in Functional Magnetic Resonance Imaging Scans Using Convolutional Neural Networks
    Arighelescu, Georgian
    Chira, Camelia
    Mansson, Kristoffer N. T.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I, 2025, 15346 : 75 - 84
  • [39] Functional magnetic resonance imaging
    Bullmore, ET
    Suckling, J
    INTERNATIONAL REVIEW OF PSYCHIATRY, 2001, 13 (01) : 24 - 33
  • [40] Functional magnetic resonance imaging
    Leblanc, R
    Zatorre, R
    JOURNAL OF NEUROSURGERY, 1997, 86 (02) : 316 - 317