A 3D Discontinuous Galerkin Time-domain Method for Nano Plasmonics with a Nonlocal Dispersion Model

被引:0
|
作者
Schmitt, N. [1 ]
Viquerat, J. [1 ]
Scheid, C. [2 ]
Lanteri, S. [1 ]
Moeferdt, M. [3 ]
Busch, K. [3 ,4 ]
机构
[1] Cote dAzur Univ, INRIA, CNRS, LJAD, Paris, France
[2] Cote dAzur Univ, LJAD, CNRS, INRIA, Paris, France
[3] Humboldt Univ, Inst Phys, AG Theoret Opt & Photon, Berlin, Germany
[4] Max Born Inst Nichtlineare Opt & Kurzzeitspektros, Berlin, Germany
关键词
MAXWELLS EQUATIONS; OPTICAL-PROPERTIES; DGTD METHOD; SPHERES; CONVERGENCE; STABILITY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present recent advances in the development of a Discontinuous Galerkin Time Domain (DGTD) solver for computational nanophotonics, focusing on metallic nanostructures irradiated by laser pulses. After a brief reminder about the DGTD method in the nano-optics framework, we discuss a nonlocal dispersion model for the electron gas, which accounts for spatial dispersion that becomes important for structure sizes between 2 nm and 25 nm. Then, we deal with the numerical modeling of this nonlocal model when coupled to the 3D Maxwell's equations in time-domain. We conclude by assessing our implementation with analytical solutions and provide selected numerical examples.
引用
收藏
页码:2792 / 2799
页数:8
相关论文
共 50 条
  • [31] Discontinuous Galerkin Implementation of Domain Decomposition Time-Domain Finite-Element Method
    Ye, Zhenbao
    Wang, Chao-Fu
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2338 - 2341
  • [32] DISCONTINUOUS GALERKIN METHOD FOR A 2D NONLOCAL FLOCKING MODEL
    Kucera, Vaclav
    Zivcakova, Andrea
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 63 - 72
  • [33] 3-D Discontinuous Galerkin Time-Domain Method for Anisotropic Materials (vol 11, pg 1182, 2012)
    Alvarez, J.
    Angulo, Luis D.
    Bretones, A. Rubio
    de Jong, Carlos M.
    Garcia, Salvador G.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 : 1720 - 1720
  • [34] Interior Penalty Discontinuous Galerkin Time-Domain Method Based on Wave Equation for 3-D Electromagnetic Modeling
    Tian, Cheng-Yi
    Shi, Yan
    Chan, Chi Hou
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (12) : 7174 - 7184
  • [35] Discontinuous Galerkin time-domain computations of metallic nanostructures
    Stannigel, Kai
    Koenig, Michael
    Niegemann, Jens
    Busch, Kurt
    OPTICS EXPRESS, 2009, 17 (17): : 14934 - 14947
  • [36] A Discontinuous Galerkin Finite Element Time-Domain Method Modeling of Dispersive Media
    Gedney, Stephen D.
    Young, John C.
    Kramer, Tyler C.
    Roden, J. Alan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1969 - 1977
  • [37] Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation
    Munoz, Raul Pagan
    Hornikx, Maarten
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 348 : 416 - 432
  • [38] A Leap-Frog Discontinuous Galerkin Time-Domain Method for HIRF Assessment
    Alvarez, Jesus
    Diaz Angulo, Luis
    Rubio Bretones, Amelia
    Ruiz Cabello, Miguel
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2013, 55 (06) : 1250 - 1259
  • [39] Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method
    Matyssek, Christian
    Niegemann, Jens
    Hergert, Wolfram
    Busch, Kurt
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2011, 9 (04) : 367 - 373
  • [40] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515