A 3D Discontinuous Galerkin Time-domain Method for Nano Plasmonics with a Nonlocal Dispersion Model

被引:0
|
作者
Schmitt, N. [1 ]
Viquerat, J. [1 ]
Scheid, C. [2 ]
Lanteri, S. [1 ]
Moeferdt, M. [3 ]
Busch, K. [3 ,4 ]
机构
[1] Cote dAzur Univ, INRIA, CNRS, LJAD, Paris, France
[2] Cote dAzur Univ, LJAD, CNRS, INRIA, Paris, France
[3] Humboldt Univ, Inst Phys, AG Theoret Opt & Photon, Berlin, Germany
[4] Max Born Inst Nichtlineare Opt & Kurzzeitspektros, Berlin, Germany
关键词
MAXWELLS EQUATIONS; OPTICAL-PROPERTIES; DGTD METHOD; SPHERES; CONVERGENCE; STABILITY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present recent advances in the development of a Discontinuous Galerkin Time Domain (DGTD) solver for computational nanophotonics, focusing on metallic nanostructures irradiated by laser pulses. After a brief reminder about the DGTD method in the nano-optics framework, we discuss a nonlocal dispersion model for the electron gas, which accounts for spatial dispersion that becomes important for structure sizes between 2 nm and 25 nm. Then, we deal with the numerical modeling of this nonlocal model when coupled to the 3D Maxwell's equations in time-domain. We conclude by assessing our implementation with analytical solutions and provide selected numerical examples.
引用
收藏
页码:2792 / 2799
页数:8
相关论文
共 50 条
  • [1] An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations
    Christophe, Alexandra
    Descombes, Stephane
    Lanteri, Stephane
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 395 - 408
  • [2] Discontinuous Galerkin Time-Domain method for 3D modeling of ground penetrating radar scenarios
    Liu, X.
    Serhir, M.
    Kameni, A.
    Lambert, M.
    Pichon, L.
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [3] Simulations of Nano-Antennas with the Discontinuous Galerkin Time-Domain Method
    Niegemann, Jens
    Koenig, Michael
    Busch, Kurt
    PHOTONIC CRYSTAL MATERIALS AND DEVICES IX, 2010, 7713
  • [4] 3-D Discontinuous Galerkin Time-Domain Method for Anisotropic Materials
    Alvarez, J.
    Angulo, Luis D.
    Bretones, A. Rubio
    Garcia, Salvador G.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 : 1182 - 1185
  • [5] Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
    Fezoui, L
    Lanteri, S
    Lohrengel, S
    Piperno, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1149 - 1176
  • [6] Recent Developments to the Discontinuous Galerkin Time-Domain Method for 3-D Multiscale Problems
    Xu, Li
    Li, Xing
    Wang, Hao
    Liu, Bin-Qi
    Yang, Zhong-Hai
    Li, Bin
    2019 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2019, : 83 - 84
  • [7] Discontinuous Galerkin Time-Domain Method Based on Regular Hexahedron
    Gong, Junru
    Peng, Da
    Xu, Yanlin
    Yang, Hu
    Tang, Xingji
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 985 - 986
  • [8] A Nonspurious 3-D Vector Discontinuous Galerkin Finite-Element Time-Domain Method
    Chen, Jiefu
    Liu, Qing Huo
    Chai, Mei
    Mix, Jason A.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (01) : 1 - 3
  • [9] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [10] A Low-Storage Discontinuous Galerkin Time-Domain Method
    Tian, Cheng-Yi
    Shi, Yan
    Liang, Chang-Hong
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (01) : 1 - 3