Object Recognition in Noisy RGB-D Data

被引:2
|
作者
Carlos Rangel, Jose [1 ]
Morell, Vicente [1 ]
Cazorla, Miguel [1 ]
Orts-Escolano, Sergio [1 ]
Garcia Rodriguez, Jose [1 ]
机构
[1] Univ Alicante, Inst Comp Res, E-03080 Alicante, Spain
关键词
Growing neural gas; 3D object recognition; Keypoints detection;
D O I
10.1007/978-3-319-18833-1_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The object recognition task on 3D scenes is a growing research field that faces some problems relative to the use of 3D point clouds. In this work, we focus on dealing with noisy clouds through the use of the Growing Neural Gas (GNG) network filtering algorithm. Another challenge is the selection of the right keypoints detection method, that allows to identify a model into a scene cloud. The GNG method is able to represent the input data with a desired resolution while preserving the topology of the input space. Experiments show how the introduction of the GNG method yields better recognitions results than others filtering algorithms when noise is present.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 50 条
  • [31] Subset based deep learning for RGB-D object recognition
    Bai, Jing
    Wu, Yan
    Zhang, Junming
    Chen, Fuqiang
    NEUROCOMPUTING, 2015, 165 : 280 - 292
  • [32] Discriminative Feature Learning for Efficient RGB-D Object Recognition
    Asif, Umar
    Bennamoun, Mohammed
    Sohel, Ferdous
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 272 - 279
  • [33] RGB-D Object Recognition from Hand-Held Object Teaching
    Qiao, Leixian
    Li, Xue
    Jiang, Shuqiang
    8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 31 - 34
  • [34] Object Discovery on RGB-D Data via Salient Object Proposals
    Li, Wanyi
    Wang, Peng
    Qiao, Hong
    Fan, Naiji
    Zhou, Hai
    Jing, Feng
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 737 - 739
  • [35] RGB-D Object Recognition Using the Knowledge Transferred from Relevant RGB Images
    Gao, Depeng
    Wu, Rui
    Liu, Jiafeng
    Huang, Qingcheng
    Tang, Xianglong
    Liu, Peng
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 642 - 651
  • [36] Dexterous Manipulation Based on Object Recognition and Accurate Pose Estimation Using RGB-D Data
    Manawadu, Udaka A.
    Keitaro, Naruse
    SENSORS, 2024, 24 (21)
  • [37] Dexterous Manipulation Based on Object Recognition and Accurate Pose Estimation Using RGB-D Data
    Manawadu, Udaka A.
    Keitaro, Naruse
    Sensors, 24 (21):
  • [38] Learning of perceptual grouping for object segmentation on RGB-D data
    Richtsfeld, Andreas
    Moerwald, Thomas
    Prankl, Johann
    Zillich, Michael
    Vincze, Markus
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) : 64 - 73
  • [39] Perception Subsystem for Object Recognition and Pose Estimation in RGB-D Images
    Kornuta, Tomasz
    Laszkowski, Michal
    CHALLENGES IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2016, 440 : 597 - 607
  • [40] An Empirical Analysis of Deep Feature Learning for RGB-D Object Recognition
    Caglayan, Ali
    Can, Ahmet Burak
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 312 - 320