An Empirical Analysis of Deep Feature Learning for RGB-D Object Recognition

被引:1
|
作者
Caglayan, Ali [1 ]
Can, Ahmet Burak [1 ]
机构
[1] Hacettepe Univ, Dept Comp Engn, Ankara, Turkey
来源
关键词
RGB-D object recognition; Deep feature learning;
D O I
10.1007/978-3-319-59876-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional deep feature learning methods use the same model parameters for both RGB and depth domains in RGB-D object recognition. Since the characteristics of RGB and depth data are different, the suitability of such approaches is suspicious. In this paper, we empirically investigate the effects of different model parameters on RGB and depth domains using the Washington RGB-D Object Dataset. We have explored the effects of different filter learning approaches, rectifier functions, pooling methods, and classifiers for RGB and depth data separately. We have found that individual model parameters fit best for RGB and depth data.
引用
收藏
页码:312 / 320
页数:9
相关论文
共 50 条
  • [1] Deep sensorimotor learning for RGB-D object recognition
    Thermos, Spyridon
    Papadopoulos, Georgios Th.
    Daras, Petros
    Potamianos, Gerasimos
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 190
  • [2] Discriminative Feature Learning for Efficient RGB-D Object Recognition
    Asif, Umar
    Bennamoun, Mohammed
    Sohel, Ferdous
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 272 - 279
  • [3] Multimodal Deep Learning for Robust RGB-D Object Recognition
    Eitel, Andreas
    Springenberg, Jost Tobias
    Spinello, Luciano
    Riedmiller, Martin
    Burgard, Wolfram
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 681 - 687
  • [4] Subset based deep learning for RGB-D object recognition
    Bai, Jing
    Wu, Yan
    Zhang, Junming
    Chen, Fuqiang
    NEUROCOMPUTING, 2015, 165 : 280 - 292
  • [5] Semi-supervised learning and feature evaluation for RGB-D object recognition
    Cheng, Yanhua
    Zhao, Xin
    Huang, Kaiqi
    Tan, Tieniu
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 139 : 149 - 160
  • [6] Multi-modal deep feature learning for RGB-D object detection
    Xu, Xiangyang
    Li, Yuncheng
    Wu, Gangshan
    Luo, Jiebo
    PATTERN RECOGNITION, 2017, 72 : 300 - 313
  • [7] A deep multimodal feature learning network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 92 (92)
  • [8] Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning
    Aakerberg, Andreas
    Nasrollahi, Kamal
    Heder, Thomas
    PROCEEDINGS OF THE 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA 2017), 2017,
  • [9] SAE-RNN Deep Learning for RGB-D Based Object Recognition
    Bai, Jing
    Wu, Yan
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 235 - 240
  • [10] Localized Deep Extreme Learning Machines for Efficient RGB-D Object Recognition
    Zaki, Hasan F. M.
    Shafait, Faisal
    Mian, Ajmal
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 489 - 496