An Empirical Analysis of Deep Feature Learning for RGB-D Object Recognition

被引:1
|
作者
Caglayan, Ali [1 ]
Can, Ahmet Burak [1 ]
机构
[1] Hacettepe Univ, Dept Comp Engn, Ankara, Turkey
来源
关键词
RGB-D object recognition; Deep feature learning;
D O I
10.1007/978-3-319-59876-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional deep feature learning methods use the same model parameters for both RGB and depth domains in RGB-D object recognition. Since the characteristics of RGB and depth data are different, the suitability of such approaches is suspicious. In this paper, we empirically investigate the effects of different model parameters on RGB and depth domains using the Washington RGB-D Object Dataset. We have explored the effects of different filter learning approaches, rectifier functions, pooling methods, and classifiers for RGB and depth data separately. We have found that individual model parameters fit best for RGB and depth data.
引用
收藏
页码:312 / 320
页数:9
相关论文
共 50 条
  • [21] Semi-Supervised Learning for RGB-D Object Recognition
    Cheng, Yanhua
    Zhao, Xin
    Huang, Kaiqi
    Tan, Tieniu
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2377 - 2382
  • [22] Collaborative multimodal feature learning for RGB-D action recognition
    Kong, Jun
    Liu, Tianshan
    Jiang, Min
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 537 - 549
  • [23] Rethinking feature aggregation for deep RGB-D salient object detection
    Zhang, Yuan-fang
    Zheng, Jiangbin
    Li, Long
    Liu, Nian
    Jia, Wenjing
    Fan, Xiaochen
    Xu, Chengpei
    He, Xiangjian
    NEUROCOMPUTING, 2021, 423 : 463 - 473
  • [24] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    PATTERN RECOGNITION, 2024, 150
  • [25] RGB-D Object Recognition Using Deep Convolutional Neural Networks
    Zia, Saman
    Yuksel, Buket
    Yuret, Deniz
    Yemez, Yucel
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 887 - 894
  • [26] RGB-D OBJECT RECOGNITION WITH MULTIMODAL DEEP CONVOLUTIONAL NEURAL NETWORKS
    Rahman, Mohammad Muntasir
    Tan, Yanhao
    Xue, Jian
    Lu, Ke
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 991 - 996
  • [27] Large-Margin Multi-Modal Deep Learning for RGB-D Object Recognition
    Wang, Anran
    Lu, Jiwen
    Cai, Jianfei
    Cham, Tat-Jen
    Wang, Gang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 1887 - 1898
  • [28] Uniform and Variational Deep Learning for RGB-D Object Recognition and Person Re-Identification
    Ren, Liangliang
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 4970 - 4983
  • [29] RGB-D Object Modelling for Object Recognition and Tracking
    Prankl, Johann
    Aldoma, Aitor
    Svejda, Alexander
    Vincze, Markus
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 96 - 103
  • [30] Modality-specific and hierarchical feature learning for RGB-D hand-held object recognition
    Lv, Xiong
    Liu, Xinda
    Li, Xiangyang
    Li, Xue
    Jiang, Shuqiang
    He, Zhiqiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (03) : 4273 - 4290