Generalized subdivision of Bezier surfaces

被引:6
|
作者
Hu, SM [1 ]
Wang, GZ [1 ]
Jin, TG [1 ]
机构
[1] ZHEJIANG UNIV, DEPT MATH APPL, HANGZHOU 310027, PEOPLES R CHINA
来源
GRAPHICAL MODELS AND IMAGE PROCESSING | 1996年 / 58卷 / 03期
关键词
D O I
10.1006/gmip.1996.0018
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, subdivision methods for rectangular Bezier surfaces are generalized to subdivide a rectangular Bezier surface patch of degree n x m into two rectangular Bezier surface patches of degree n x (m + n), while the parameter domain of the Bezier surface is decomposed into two trapezoids. As an application, a conversion from rectangular Bezier surfaces to triangular Bezier surfaces is presented. (C) 1996 Academic Press, Inc.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 50 条
  • [31] Shape-adjustable developable generalized blended trigonometric Bezier surfaces and their applications
    Maqsood, Sidra
    Abbas, Muhammad
    Miura, Kenjiro T.
    Majeed, Abdul
    Hu, Gang
    Nazir, Tahir
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [32] Shape-adjustable generalized Bezier surfaces: Construction and it is geometric continuity conditions
    Hu, Gang
    Bo, Cuicui
    Wei, Guo
    Qin, Xinqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [33] Generalized Bezier transformation
    Volkov, Yu. I.
    MATHEMATICAL NOTES, 2015, 97 (5-6) : 669 - 678
  • [34] Generalized Bezier transformation
    Yu. I. Volkov
    Mathematical Notes, 2015, 97 : 669 - 678
  • [35] Bezier developable surfaces
    Fernandez-Jambrina, L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 55 : 15 - 28
  • [36] Bezier type surfaces
    Piscoran Laurian, Ioan
    Pop, Ovidiu T.
    Dan, Barbosu
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 483 - 489
  • [37] ON THE NUMERICAL CONDITION OF BERNSTEIN-BEZIER SUBDIVISION PROCESSES
    FAROUKI, RT
    NEFF, CA
    MATHEMATICS OF COMPUTATION, 1990, 55 (192) : 637 - 647
  • [38] DECASTELJAU-TYPE SUBDIVISION IS PECULIAR TO BEZIER CURVES
    BARRY, PJ
    GOLDMAN, RN
    COMPUTER-AIDED DESIGN, 1988, 20 (03) : 114 - 116
  • [39] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111
  • [40] On the smooth convergence of subdivision and degree elevation for Bezier curves
    Morin, G
    Goldman, R
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (07) : 657 - 666