Generalized subdivision of Bezier surfaces

被引:6
|
作者
Hu, SM [1 ]
Wang, GZ [1 ]
Jin, TG [1 ]
机构
[1] ZHEJIANG UNIV, DEPT MATH APPL, HANGZHOU 310027, PEOPLES R CHINA
来源
GRAPHICAL MODELS AND IMAGE PROCESSING | 1996年 / 58卷 / 03期
关键词
D O I
10.1006/gmip.1996.0018
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, subdivision methods for rectangular Bezier surfaces are generalized to subdivide a rectangular Bezier surface patch of degree n x m into two rectangular Bezier surface patches of degree n x (m + n), while the parameter domain of the Bezier surface is decomposed into two trapezoids. As an application, a conversion from rectangular Bezier surfaces to triangular Bezier surfaces is presented. (C) 1996 Academic Press, Inc.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 50 条
  • [21] THE TERMINATION CRITERION FOR SUBDIVISION OF THE RATIONAL BEZIER CURVES
    WANG, GJ
    XU, W
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1991, 53 (01): : 93 - 96
  • [22] Adaptive subdivision algorithms for a set of Bezier triangles
    Berkeley Comp. Graphics Laboratory, Dept. of Elec. Eng. and Comp. Sci., University of California, Berkeley, CA 94720, United States
    Comput Aided Eng, 2 (74-78):
  • [23] Termination criterion for subdivision of triangular Bezier patch
    Li, YQ
    Ke, YL
    Li, WS
    Peng, QS
    Tan, JR
    COMPUTERS & GRAPHICS-UK, 2002, 26 (01): : 67 - 74
  • [24] Adaptive subdivision and the length and energy of Bezier curves
    Gravesen, J
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (01): : 13 - 31
  • [25] ADAPTIVE SUBDIVISION ALGORITHMS FOR A SET OF BEZIER TRIANGLES
    FILIP, DJ
    COMPUTER-AIDED DESIGN, 1986, 18 (02) : 74 - 78
  • [26] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [27] Generalized Debye Sources-Based EFIE Solver on Subdivision Surfaces
    Fu, Xin
    Li, Jie
    Jiang, Li Jun
    Shanker, Balasubramaniam
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (10) : 5376 - 5386
  • [28] Subdivision surfaces
    DeRose, T
    COMPUTER GRAPHICS WORLD, 1998, 21 (02) : 22 - 22
  • [29] Shape-Adjustable Generalized Bezier Rotation Surfaces with Multiple Shape Parameters
    Hu, Gang
    Wei, Guo
    Wu, Junli
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1281 - 1313
  • [30] Generalized quartic H-Bezier curves: Construction and application to developable surfaces
    Hu Gang
    Wu Junli
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 138