A Multi-population Schema Designed for Biased Random-Key Genetic Algorithms on Continuous Optimisation Problems

被引:1
|
作者
Boiani, Mateus [1 ]
Parpinelli, Rafael Stubs [2 ]
Dorn, Marcio [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Santa Catarina State Univ, Grad Program Appl Comp, Joinville, SC, Brazil
来源
INTELLIGENT SYSTEMS, PT I | 2022年 / 13653卷
关键词
Genetic algorithms; Parallel metaheuristics; Island model;
D O I
10.1007/978-3-031-21686-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Evolutionary Algorithms, population diversity is a determinant factor for the quality of the final solutions. Due to diverse problem characteristics, many techniques face difficulties and converge prematurely in local optima. The maintenance of diversity allows the algorithm to explore the search space and efficiently achieve better results. Parallel models are well-known techniques to maintain population diversity; however, design choices lead to different characteristics for the optimization process. For instance, the migration policy on the Island model can control how fast the algorithm converges. This work proposes a new migration policy designed for the Biased Random-Key Genetic Algorithm (BRKGA). Also, the proposal is compared with two traditional strategies and evaluates its performance in continuous search spaces. The results show that the proposal can improve the BRKGA optimization capability with suitable parameters.
引用
收藏
页码:444 / 457
页数:14
相关论文
共 50 条
  • [21] A biased random-key genetic algorithm for routing and wavelength assignment
    Thiago F. Noronha
    Mauricio G. C. Resende
    Celso C. Ribeiro
    Journal of Global Optimization, 2011, 50 : 503 - 518
  • [22] A biased random-key genetic algorithm for road congestion minimization
    Luciana S. Buriol
    Michael J. Hirsch
    Panos M. Pardalos
    Tania Querido
    Mauricio G. C. Resende
    Marcus Ritt
    Optimization Letters, 2010, 4 : 619 - 633
  • [23] A Multi-objective Biased Random-Key Genetic Algorithm for the Siting of Emergency Vehicles
    Da Ros, Francesca
    Di Gaspero, Luca
    La Barbera, David
    Della Mea, Vincenzo
    Roitero, Kevin
    Deroma, Laura
    Licata, Sabrina
    Valent, Francesca
    METAHEURISTICS, MIC 2022, 2023, 13838 : 449 - 456
  • [24] A biased random-key genetic algorithm for road congestion minimization
    Buriol, Luciana S.
    Hirsch, Michael J.
    Pardalos, Panos M.
    Querido, Tania
    Resende, Mauricio G. C.
    Ritt, Marcus
    OPTIMIZATION LETTERS, 2010, 4 (04) : 619 - 633
  • [25] A biased random-key genetic algorithm for the chordal completion problem
    Silva, Samuel E.
    Ribeiro, Celso C.
    Souza, Ueverton dos Santos
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (03) : 1559 - 1578
  • [26] A Biased Random-Key Genetic Algorithm for Regression Test Case Prioritization
    Carballo, Pablo
    Perera, Pablo
    Rama, Santiago
    Pedemonte, Martin
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [27] A biased random-key genetic algorithm for the Steiner triple covering problem
    Resende, Mauricio G. C.
    Toso, Rodrigo F.
    Goncalves, Jose Fernando
    Silva, Ricardo M. A.
    OPTIMIZATION LETTERS, 2012, 6 (04) : 605 - 619
  • [28] D-BRKGA: a Distributed Biased Random-Key Genetic Algorithm
    de Faria Alixandre, Bruno Ferreira
    Dorn, Marcio
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1398 - 1405
  • [29] A biased random-key genetic algorithm for the home health care problem
    Kummer, Alberto F.
    de Araujo, Olinto C. B.
    Buriol, Luciana S.
    Resende, Mauricio G. C.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2024, 31 (03) : 1859 - 1889
  • [30] A biased random-key genetic algorithm for the Steiner triple covering problem
    Mauricio G. C. Resende
    Rodrigo F. Toso
    José Fernando Gonçalves
    Ricardo M. A. Silva
    Optimization Letters, 2012, 6 : 605 - 619