A Multi-population Schema Designed for Biased Random-Key Genetic Algorithms on Continuous Optimisation Problems

被引:1
|
作者
Boiani, Mateus [1 ]
Parpinelli, Rafael Stubs [2 ]
Dorn, Marcio [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Santa Catarina State Univ, Grad Program Appl Comp, Joinville, SC, Brazil
来源
INTELLIGENT SYSTEMS, PT I | 2022年 / 13653卷
关键词
Genetic algorithms; Parallel metaheuristics; Island model;
D O I
10.1007/978-3-031-21686-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Evolutionary Algorithms, population diversity is a determinant factor for the quality of the final solutions. Due to diverse problem characteristics, many techniques face difficulties and converge prematurely in local optima. The maintenance of diversity allows the algorithm to explore the search space and efficiently achieve better results. Parallel models are well-known techniques to maintain population diversity; however, design choices lead to different characteristics for the optimization process. For instance, the migration policy on the Island model can control how fast the algorithm converges. This work proposes a new migration policy designed for the Biased Random-Key Genetic Algorithm (BRKGA). Also, the proposal is compared with two traditional strategies and evaluates its performance in continuous search spaces. The results show that the proposal can improve the BRKGA optimization capability with suitable parameters.
引用
收藏
页码:444 / 457
页数:14
相关论文
共 50 条
  • [11] Biased random-key genetic algorithms for the minimum subgraph diameter problem
    Dadalto, Arthur Pratti
    Usberti, Fabio Luiz
    San Felice, Mario Cesar
    OPTIMIZATION LETTERS, 2024,
  • [12] Early years of biased random-key genetic algorithms: a systematic review
    Londe, Mariana A.
    Pessoa, Luciana S.
    Andrade, Carlos E.
    Resende, Mauricio G. C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2024,
  • [13] Biased Random-Key Genetic Algorithms for theWinner Determination Problem in Combinatorial Auctions
    de Andrade, Carlos Eduardo
    Toso, Rodrigo Franco
    Resende, Mauricio G. C.
    Miyazawa, Flavio Keidi
    EVOLUTIONARY COMPUTATION, 2015, 23 (02) : 279 - 307
  • [14] BrkgaCuda 2.0: a framework for fast biased random-key genetic algorithms on GPUs
    Oliveira, Bruno A.
    Xavier, Eduardo C.
    Borin, Edson
    Soft Computing, 2024, 28 (21) : 12689 - 12704
  • [15] A Biased Random-Key Genetic Algorithm for Bandwidth Reduction
    Silva, P. H. G.
    Brandao, D. N.
    Morais, I. S.
    Gonzaga de Oliveira, S. L.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 312 - 321
  • [16] A biased random-key genetic algorithm for data clustering
    Festa, P.
    MATHEMATICAL BIOSCIENCES, 2013, 245 (01) : 76 - 85
  • [17] A C plus plus application programming interface for biased random-key genetic algorithms
    Toso, R. F.
    Resende, M. G. C.
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (01): : 81 - 93
  • [18] A biased random-key genetic algorithm for the set orienteering problem
    Carrabs, Francesco
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (03) : 830 - 854
  • [19] A biased random-key genetic algorithm for routing and wavelength assignment
    Noronha, Thiago F.
    Resende, Mauricio G. C.
    Ribeiro, Celso C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (03) : 503 - 518
  • [20] A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems
    Brandao, Julliany S.
    Noronha, Thiago F.
    Resende, Mauricio G. C.
    Ribeiro, Celso C.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (05) : 1061 - 1077