A Multi-population Schema Designed for Biased Random-Key Genetic Algorithms on Continuous Optimisation Problems

被引:1
|
作者
Boiani, Mateus [1 ]
Parpinelli, Rafael Stubs [2 ]
Dorn, Marcio [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Santa Catarina State Univ, Grad Program Appl Comp, Joinville, SC, Brazil
来源
INTELLIGENT SYSTEMS, PT I | 2022年 / 13653卷
关键词
Genetic algorithms; Parallel metaheuristics; Island model;
D O I
10.1007/978-3-031-21686-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Evolutionary Algorithms, population diversity is a determinant factor for the quality of the final solutions. Due to diverse problem characteristics, many techniques face difficulties and converge prematurely in local optima. The maintenance of diversity allows the algorithm to explore the search space and efficiently achieve better results. Parallel models are well-known techniques to maintain population diversity; however, design choices lead to different characteristics for the optimization process. For instance, the migration policy on the Island model can control how fast the algorithm converges. This work proposes a new migration policy designed for the Biased Random-Key Genetic Algorithm (BRKGA). Also, the proposal is compared with two traditional strategies and evaluates its performance in continuous search spaces. The results show that the proposal can improve the BRKGA optimization capability with suitable parameters.
引用
收藏
页码:444 / 457
页数:14
相关论文
共 50 条
  • [1] A parallel multi-population biased random-key genetic algorithm for a container loading problem
    Goncalves, Jose Fernando
    Resende, Mauricio G. C.
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (02) : 179 - 190
  • [2] A Parallel Multi-Population Biased Random-Key Genetic Algorithm for Electric Distribution Network Reconfiguration
    de Faria Jr, Haroldo
    Lunardi, Willian Tessaro
    Voos, Holger
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 281 - 282
  • [3] Biased random-key genetic algorithms: A review
    Londe, Mariana A.
    Pessoa, Luciana S.
    Andrade, Carlos E.
    Resende, Mauricio G. C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 321 (01) : 1 - 22
  • [4] Biased random-key genetic algorithms for combinatorial optimization
    Goncalves, Jose Fernando
    Resende, Mauricio G. C.
    JOURNAL OF HEURISTICS, 2011, 17 (05) : 487 - 525
  • [5] Biased random-key genetic algorithms with applications in telecommunications
    Resende, Mauricio G. C.
    TOP, 2012, 20 (01) : 130 - 153
  • [6] Biased random-key genetic algorithms: A tutorial with applications
    Noronha, Thiago F.
    Ribeiro, Celso C.
    2024 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE, ISMSI 2024, 2024, : 110 - 115
  • [7] Biased random-key genetic algorithms for combinatorial optimization
    José Fernando Gonçalves
    Mauricio G. C. Resende
    Journal of Heuristics, 2011, 17 : 487 - 525
  • [8] Biased random-key genetic algorithms with applications in telecommunications
    Mauricio G. C. Resende
    TOP, 2012, 20 : 130 - 153
  • [9] Biased random-key genetic algorithms: An advanced tutorial
    Resende, Mauricio G. C.
    Ribeiro, Celso C.
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 483 - 514
  • [10] Multi-objective multi-population biased random-key genetic algorithm for the 3-D container loading problem
    Zheng, Jia-Nian
    Chien, Chen-Fu
    Gen, Mitsuo
    COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 89 : 80 - 87