The L(2,1)-labelling of trees

被引:40
|
作者
Wang, WF [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
L(2,1)-labelling; tree; distance; maximum degree;
D O I
10.1016/j.dam.2005.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L(2, 1)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that adjacent vertices have numbers at least 2 apart, and vertices at distance 2 have distinct numbers. The L(2,1)-labelling number lambda(G) of G is the minimum range of labels over all such labellings. It was shown by Griggs and Yeh [Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595] that every tree T has Delta + 1 <= lambda(T) <= Delta + 2. This paper prov ides a sufficient condition for lambda(T) = Delta + 1. Namely, we prove that if a tree T contains no two vertices of maximum degree at distance either 1, 2, or 4, then lambda(T) = Delta + 1. Examples of trees T with two vertices of maximum degree at distance 4 such that lambda(T) = Delta + 2 are constructed. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:598 / 603
页数:6
相关论文
共 50 条
  • [41] L(2,1)-LABELING OF CIRCULANT GRAPHS
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 143 - 155
  • [42] On L(2,1)-Labelings of Oriented Graphs
    Colucci, Lucas
    Gyori, Ervin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 39 - 46
  • [43] L(2,1)-LABELING OF TRAPEZOID GRAPHS
    Paul, S.
    Amanathulla, S. K.
    Pal, M.
    Pal, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1254 - 1263
  • [44] L(2,1)-labeling of a circular graph
    Ma, Dengju
    Ren, Han
    Lv, Damei
    ARS COMBINATORIA, 2015, 123 : 231 - 245
  • [45] L(2,1)-coloring of the Fibonacci cubes
    Taranenko, A
    Vesel, A
    ITI 2004: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2004, : 561 - 566
  • [46] The L(2,1)-labeling problem on graphs
    Chang, GJ
    Kuo, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 309 - 316
  • [47] No-hole L(2,1)-colorings
    Fishburn, PC
    Roberts, FS
    DISCRETE APPLIED MATHEMATICS, 2003, 130 (03) : 513 - 519
  • [48] L(2,1)-labelings of subdivisions of graphs
    Chang, Fei-Huang
    Chia, Ma-Lian
    Kuo, David
    Liaw, Sheng-Chyang
    Tsai, Meng-Hsuan
    DISCRETE MATHEMATICS, 2015, 338 (02) : 248 - 255
  • [49] L(2,1)-coloring matrogenic graphs
    Calamoneri, T
    Petreschi, R
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 236 - 247
  • [50] L(2,1)-labeling of interval graphs
    Paul S.
    Pal M.
    Pal A.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 419 - 432