Dynamics near nonhyperbolic fixed points or nontransverse homoclinic points

被引:0
|
作者
Kryzhevich, Sergey [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198503, Russia
关键词
Partial hyperbolicity; Center unstable manifold; Homoclinic point; Chaos; PERIODIC POINTS; LYAPUNOV FUNCTIONS; SYSTEMS; ORBITS; BIFURCATIONS; PERSISTENCE; STABILITY;
D O I
10.1016/j.matcom.2012.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study dynamics in a neighborhood of a nonhyperbolic fixed point or an irreducible homoclinic tangent point. General type conditions for the existence of infinite sets of periodic points are obtained. A new method, based on the study of the dynamics of center disks, is introduced. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 179
页数:17
相关论文
共 50 条
  • [31] Homoclinic orbits to parabolic points
    Josefina Casasayas
    Ernest Fontich
    Ana Nunes
    Nonlinear Differential Equations and Applications NoDEA, 1997, 4 : 201 - 216
  • [32] Homoclinic points for convex billiards
    Xia, Zhihong
    Zhang, Pengfei
    NONLINEARITY, 2014, 27 (06) : 1181 - 1192
  • [33] HOMOCLINIC POINTS IN CONSERVATIVE SYSTEMS
    TAKENS, F
    INVENTIONES MATHEMATICAE, 1972, 18 (3-4) : 267 - 292
  • [34] HOMOCLINIC POINTS AND FLOER HOMOLOGY
    Hohloch, Sonja
    JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (04) : 645 - 701
  • [35] HOMOCLINIC POINTS OF MAPPINGS OF INTERVAL
    BLOCK, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (03) : 576 - 580
  • [36] Periodic points and homoclinic classes
    Abdenur, F.
    Bonatti, Ch.
    Crovisier, S.
    Diaz, L. J.
    Wen, L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1 - 22
  • [37] Extreme dynamics near exceptional points
    Zhong, Q.
    Makris, K. G.
    El-Ganainy, R.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [38] FIXED POINTS, COUPLED FIXED POINTS AND BEST PROXIMITY POINTS FOR CYCLIC OPERATORS
    Petrusel, Adrian
    Petrusel, Gabriela
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (08) : 1637 - 1646
  • [39] Fixed points and random fixed points for α-Lipschitzian maps
    O'Regan, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (04) : 537 - 544
  • [40] FIXED-POINTS AND HOMOTOPY FIXED-POINTS
    FARJOUN, ED
    ZABRODSKY, A
    COMMENTARII MATHEMATICI HELVETICI, 1988, 63 (02) : 286 - 295