Dynamics near nonhyperbolic fixed points or nontransverse homoclinic points

被引:0
|
作者
Kryzhevich, Sergey [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198503, Russia
关键词
Partial hyperbolicity; Center unstable manifold; Homoclinic point; Chaos; PERIODIC POINTS; LYAPUNOV FUNCTIONS; SYSTEMS; ORBITS; BIFURCATIONS; PERSISTENCE; STABILITY;
D O I
10.1016/j.matcom.2012.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study dynamics in a neighborhood of a nonhyperbolic fixed point or an irreducible homoclinic tangent point. General type conditions for the existence of infinite sets of periodic points are obtained. A new method, based on the study of the dynamics of center disks, is introduced. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 179
页数:17
相关论文
共 50 条
  • [21] On Hyperbolic Fixed Points in Ultrametric Dynamics
    Lindahl, Karl-Olof
    Zieve, Michael
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2010, 2 (03) : 232 - 240
  • [22] Dynamics in the neighbourhood of a continuum of fixed points
    Campos J.
    Dancer E.N.
    Ortega R.
    Annali di Matematica Pura ed Applicata, 2002, 180 (4) : 483 - 492
  • [23] On the dynamics of some diffeomorphisms of C2 near parabolic fixed points
    Coman, D
    Dabija, M
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 85 - 96
  • [24] The dynamics of holomorphic germs tangent to the identity near a smooth curve of fixed points
    Sahraoui, Fatiha
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (05): : 461 - 468
  • [25] Invariant manifolds near hyperbolic fixed points
    Homburg, Ale Jan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (10) : 1057 - 1068
  • [26] POINCARES DISCOVERY OF HOMOCLINIC POINTS
    ANDERSSON, KG
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1994, 48 (02) : 133 - 147
  • [27] Homoclinic orbits to parabolic points
    Casasayas, Josefina
    Fontich, Ernest
    Nunes, Ana
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (02): : 201 - 216
  • [28] ON THE GENERIC EXISTENCE OF HOMOCLINIC POINTS
    OLIVEIRA, F
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 : 567 - 595
  • [29] EXISTENCE OF COMPLEX HOMOCLINIC POINTS
    Igotti, N. N.
    Lazutkin, V. F.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (04): : 383 - 400
  • [30] FIXED POINTS AND ANTIPODAL POINTS
    WHITTLESEY, EF
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (08): : 807 - &