On regular graphs of girth six arising from projective planes

被引:2
|
作者
Gacs, Andras
Heger, Tamas [1 ]
Weiner, Zsuzsa [1 ,2 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
[2] Prezi Com, H-1075 Budapest, Hungary
关键词
Q);
D O I
10.1016/j.ejc.2012.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1967, Brown constructed small k-regular graphs of girth six as induced subgraphs of the incidence graph of a projective plane of order q, q >= k. Examining the construction method, we prove that starting from PG(2. q), q = p(h), p prime, there are no other constructions using this idea resulting in a (q + 1 - t)-regular graph of girth six than the known ones, if t is not too large (t <= p and roughly t < q(1/6)/8). Both algebraic and combinatorial tools are used. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条
  • [41] Regular graphs of girth 5 from elliptic semiplanes of type C
    Abajo, E.
    Bendala, M.
    DISCRETE MATHEMATICS, 2021, 344 (06)
  • [42] Strongly regular graphs arising from Hermitian varieties
    Cossidente, A.
    Korchmaros, G.
    Marino, G.
    TOPICS IN FINITE FIELDS, 2015, 632 : 95 - 100
  • [43] Maximum Bisections of Graphs with Girth at Least Six
    Wu, Shufei
    Xiong, Xiaobei
    GRAPHS AND COMBINATORICS, 2024, 40 (06)
  • [44] Flexibility of planar graphs of girth at least six
    Dvorak, Zdenek
    Masarik, Tomas
    Musilek, Jan
    Pangrac, Ondrej
    JOURNAL OF GRAPH THEORY, 2020, 95 (03) : 457 - 466
  • [45] PROJECTIVE-PLANES, GRAPHS, AND SIMPLE ALGEBRAS
    ROTMAN, JJ
    JOURNAL OF ALGEBRA, 1993, 155 (02) : 267 - 289
  • [46] Coloring squares of planar graphs with girth six
    Dvorak, Zdenek
    Kral, Daniel
    Nejedly, Pavel
    Skrekovski, Riste
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 838 - 849
  • [47] An Extremal Characterization of the Incidence Graphs of Projective Planes
    Gene Fiorini
    Felix Lazebnik
    Acta Applicandae Mathematica, 1998, 52 : 257 - 260
  • [48] An extremal characterization of the incidence graphs of projective planes
    Fiorini, G
    Lazebnik, F
    ACTA APPLICANDAE MATHEMATICAE, 1998, 52 (1-3) : 257 - 260
  • [49] Regular Algebraic Surfaces, Ramification Structures and Projective Planes
    Barker, N.
    Boston, N.
    Peyerimhoff, N.
    Vdovina, A.
    BEAUVILLE SURFACES AND GROUPS, 2015, 123 : 15 - 33
  • [50] A note on distance-regular graphs with girth 3
    Zhang, GS
    Wang, KS
    ARS COMBINATORIA, 2004, 71 : 187 - 193