On regular graphs of girth six arising from projective planes

被引:2
|
作者
Gacs, Andras
Heger, Tamas [1 ]
Weiner, Zsuzsa [1 ,2 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
[2] Prezi Com, H-1075 Budapest, Hungary
关键词
Q);
D O I
10.1016/j.ejc.2012.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1967, Brown constructed small k-regular graphs of girth six as induced subgraphs of the incidence graph of a projective plane of order q, q >= k. Examining the construction method, we prove that starting from PG(2. q), q = p(h), p prime, there are no other constructions using this idea resulting in a (q + 1 - t)-regular graph of girth six than the known ones, if t is not too large (t <= p and roughly t < q(1/6)/8). Both algebraic and combinatorial tools are used. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条
  • [21] A stability result for girth-regular graphs with even girth
    Kiss, Gyorgy
    Miklavic, Stefko
    Szonyi, Tamas
    JOURNAL OF GRAPH THEORY, 2022, 100 (01) : 163 - 181
  • [22] GRAPHS EMBEDDED INTO FINITE PROJECTIVE PLANES
    Mellinger, Keith
    Vaughn, Ryan
    Vega, Oscar
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (01) : 113 - 125
  • [23] On orienting graphs for connectivity: Projective planes and Halin graphs
    Cheriyan, Joseph
    Zou, Chenglong
    OPERATIONS RESEARCH LETTERS, 2012, 40 (05) : 337 - 341
  • [24] Small weight codewords in the codes arising from Desarguesian projective planes
    Fack, Veerle
    Fancsali, Szabolcs L.
    Storme, Leo
    Van de Voorde, Geertrui
    Winne, Joost
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 46 (01) : 25 - 43
  • [25] Small weight codewords in the codes arising from Desarguesian projective planes
    Veerle Fack
    Szabolcs L. Fancsali
    L. Storme
    Geetrui Van de Voorde
    Joost Winne
    Designs, Codes and Cryptography, 2008, 46 : 25 - 43
  • [26] INDEPENDENT SETS IN REGULAR GRAPHS OF HIGH GIRTH
    MCKAY, BD
    ARS COMBINATORIA, 1987, 23A : 179 - 185
  • [27] Maximum matchings in regular graphs of high girth
    Flaxman, Abraham D.
    Hoory, Shlomo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [28] Regular graphs of large girth and arbitrary degree
    Xavier Dahan
    Combinatorica, 2014, 34 : 407 - 426
  • [29] Regular graphs of large girth and arbitrary degree
    Dahan, Xavier
    COMBINATORICA, 2014, 34 (04) : 407 - 426
  • [30] ON THE BIPARTITE DENSITY OF REGULAR GRAPHS WITH LARGE GIRTH
    ZYKA, O
    JOURNAL OF GRAPH THEORY, 1990, 14 (06) : 631 - 634