Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

被引:38
|
作者
Hayton, D. J. [1 ]
Khudchencko, A. [1 ]
Pavelyev, D. G. [2 ]
Hovenier, J. N. [3 ]
Baryshev, A. [1 ]
Gao, J. R. [1 ,3 ]
Kao, T. Y. [4 ]
Hu, Q. [4 ]
Reno, J. L. [5 ]
Vaks, V. [6 ]
机构
[1] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands
[2] Lobachevskii State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
[3] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[4] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA
[5] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA
[6] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia
关键词
FREQUENCY; COMB;
D O I
10.1063/1.4817319
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency signal between the 18th harmonic of a 190.7 GHz reference source and the 3433 GHz QCL. A phase-lock loop with 7MHz bandwidth results in QCL emission that is 96% locked to the reference source. We characterize the QCL temperature and electrical tuning mechanisms and show that frequency dependence of these mechanisms can prevent phase-locking under certain QCL bias conditions. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 46 条
  • [41] Room-temperature operation of λ≈2.95μm In0.67Ga0.33As/Al0.57In0.43As quantum cascade laser source based on intracavity second harmonic generation
    Jang, Min
    Wang, Xiaojun
    Troccoli, Mariano
    Belkin, M. A.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [42] Room-temperature operation of 3.6 μm In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser sources based on intracavity second harmonic generation
    Jang, M.
    Adams, R. W.
    Chen, J. X.
    Charles, W. O.
    Gmachl, C.
    Cheng, L. W.
    Choa, F-S
    Belkin, M. A.
    APPLIED PHYSICS LETTERS, 2010, 97 (14)
  • [43] Time-Domain Analysis of Third-Order Quantum-Dot-Based Laterally-Coupled Distributed Feedback Lasers Using Travelling-Wave Approach
    Akrout, Akram
    Dridi, Kais
    Benhsaien, Abdessamad
    Hall, Trevor J.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2013, 49 (05) : 491 - 498
  • [44] Development of a spectrometer using a continuous wave distributed feedback quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth's atmosphere
    Joly, Lilian
    Robert, Claude
    Parvitte, Bertrand
    Catoire, Valery
    Durry, Georges
    Richard, Guy
    Nicoullaud, Bernard
    Zeninari, Virginie
    APPLIED OPTICS, 2008, 47 (09) : 1206 - 1214
  • [45] AMPLITUDE SQUEEZING OF A MULTIPLE-QUANTUM-WELL DISTRIBUTED-FEEDBACK SEMICONDUCTOR-LASER OPERATING AT ROOM-TEMPERATURE - EFFECT OF REDUCTION OF SPONTANEOUS-EMISSION NOISE BY INTERFEROMETRIC METHOD
    KIKUCHI, K
    WATANABE, K
    KATOH, K
    APPLIED PHYSICS LETTERS, 1994, 65 (20) : 2533 - 2535
  • [46] Multi-Gb/s free-space laser communication at 4.6-μm wavelength using a high-speed, room-temperature, resonant-cavity infrared detector (RCID) and a quantum-cascade laser
    Marsland, R.
    Jacobs, S.
    Canedy, C. L.
    Ellis, C.
    Kim, C. S.
    Jackson, E. M.
    Vurgaftman, I.
    Kolasa, B.
    Jayaraman, V.
    Turville-Heitz, M.
    Earles, T.
    Ruder, S.
    Knipfer, B.
    Ryu, J. H.
    Meyer, J. R.
    Botez, D.
    Mawst, L. J.
    OPTICS EXPRESS, 2024, 32 (13): : 22479 - 22492