Effects of well widths and well numbers on InP-based triangular quantum well lasers beyond 2.4 μm

被引:3
|
作者
Gu, Y. [1 ]
Zhang, Y. G. [1 ]
Chen, X. Y. [1 ]
Cao, Y. Y. [1 ]
Zhou, L. [1 ]
Xi, S. P. [1 ]
Li, A. Z. [1 ]
Li, Hsby [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular beam epitaxy; Arsenates; Semiconducting III-V materials; Laser diodes; EPITAXY; GROWTH;
D O I
10.1016/j.jcrysgro.2015.02.091
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The effects of well widths and well numbers of InGaAs triangular quantum well lasers in 2.30-2.44 mu m range using antimony-free material system on InP substrates are investigated. The triangular quantum well was equivalently formed by using gas source molecular beam epitaxy grown InAs/In053Ga0.47As digital alloy and the pseudomorphic growth was confirmed by the X-ray diffraction measurements. Lasing at 2.30 mu m above 330 K under continuous wave operation has been achieved for the laser with four 13 nm quantum wells. By increasing the well width to 19 nm, the continuous wave wavelength has been extended to 2.44 mu m at 290 K, whereas the epitaxial quality and laser performances are deteriorated. For those lasers with well width up to 19 nm, the moderate reduction or the quantum well numbers can restrict the strain accumulation and improve the laser performances. Continuous wave lasing at 2.38 mu m above 300 K has been achieved. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [1] High performance InP-based InAs triangular quantum well lasers operating beyond 2 μm
    Gu, Y.
    Zhang, Y. G.
    Cao, Y. Y.
    Chen, X. Y.
    Li, Hsby
    Zhou, L.
    NOVEL IN-PLANE SEMICONDUCTOR LASERS XIII, 2014, 9002
  • [2] InP-based pseudomorphic InAs/InGaAs triangular quantum well lasers with bismuth surfactant
    Ji, W. Y.
    Gu, Y.
    Zhang, Y. G.
    Ma, Y. J.
    Chen, X. Y.
    Gong, Q.
    Du, B.
    Shi, Y. H.
    APPLIED OPTICS, 2017, 56 (31) : H10 - H14
  • [3] 2.4μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature
    Gu, Yi
    Zhang, Yonggang
    Cao, Yuanying
    Zhou, Li
    Chen, Xingyou
    Li, Haosibaiyin
    Xi, Suping
    APPLIED PHYSICS EXPRESS, 2014, 7 (03)
  • [4] 2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers
    Cao, Y. Y.
    Zhang, Y. G.
    Gu, Y.
    Chen, X. Y.
    Zhou, L.
    Li, Hsby
    APPLIED PHYSICS LETTERS, 2013, 102 (20)
  • [5] InP-Based Type-II Quantum-Well Lasers and LEDs
    Sprengel, Stephan
    Grasse, Christian
    Wiecha, Peter
    Andrejew, Alexander
    Gruendl, Tobias
    Boehm, Gerhard
    Meyer, Ralf
    Amann, Markus-Christian
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
  • [6] Temperature and pressure dependence of recombination processes in 1.5 μm InGaAlAs/InP-based quantum well lasers
    Sweeney, SJ
    McConville, D
    Massé, NF
    Bouyssou, RX
    Adams, AR
    Ahmad, CN
    Hanke, C
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (14): : 3391 - 3398
  • [7] Improved performance of InP-based 2.1 μm InGaAsSb quantum well lasers using Sb as a surfactant
    Wang, Dongbo
    Zhuo, Ning
    Zhao, Yue
    Cheng, Fengmin
    Niu, Shouzhu
    Zhang, Jinchuan
    Zhai, Shenqiang
    Wang, Lijun
    Liu, Shuman
    Liu, Fengqi
    Wang, Zhanguo
    APPLIED PHYSICS LETTERS, 2018, 113 (25)
  • [8] On the internal quantum efficiency and carrier ejection in InGaAsP/InP-based quantum-well lasers
    Leshko, AY
    Lyutetskii, AV
    Pikhtin, NA
    Skrynnikov, GV
    Sokolova, ZN
    Tarasov, IS
    Fetisova, NV
    SEMICONDUCTORS, 2000, 34 (12) : 1397 - 1401
  • [9] Degradation of InGaAsP/InP-based multiquantum-well lasers
    Kallstenius, T
    Bäckström, J
    Smith, U
    Stoltz, B
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (05) : 2397 - 2406
  • [10] On the internal quantum efficiency and carrier ejection in InGaAsP/InP-based quantum-well lasers
    A. Yu. Leshko
    A. V. Lyutetskii
    N. A. Pikhtin
    G. V. Skrynnikov
    Z. N. Sokolova
    I. S. Tarasov
    N. V. Fetisova
    Semiconductors, 2000, 34 : 1397 - 1401