SPARSE DISTRIBUTED HYPERSPECTRAL UNMIXING

被引:3
|
作者
Sigurdsson, Jakob [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Bioucas-Dias, Jose M. [2 ,3 ]
机构
[1] Univ Iceland, Dept Elect Engn, Reykjavik, Iceland
[2] Univ Lisbon, Inst Telecomunicacoes, Lisbon, Portugal
[3] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
关键词
Hyperspectral unmixing; feature extraction; blind signal separation; linear unmixing; dyadic cyclic descent; alternating direction method of multipliers; optimization;
D O I
10.1109/IGARSS.2016.7730824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Blind hyperspectral unmixing is the task of jointly estimating the spectral signatures of material in a hyperspectral images and their abundances at each pixel. The size of hyperspectral images are usually very large, which may raise difficulties for classical optimization algorithms, due to limited memory of the hardware used. One solution to this problem is to consider distributed algorithms. In this paper, we develop a distributed sparse hyperspectral unmixing algorithm using the alternating direction method of multipliers (ADMM) algorithm and l(1) sparse regularization. Each sub-problem does not need to have access to the whole hyperspectral image. The algorithm is evaluated using a very large real hyperspectral image.
引用
收藏
页码:6994 / 6997
页数:4
相关论文
共 50 条
  • [41] Multiobjective sparse unmixing based hyperspectral change detection
    Jiang, Xiangming
    Gao, Tianqi
    Gong, Maoguo
    Jiang, Fenlong
    Zhang, Mingyang
    Liu, Jieyi
    APPLIED SOFT COMPUTING, 2024, 166
  • [42] Sparse unmixing analysis for hyperspectral imagery of space objects
    Shi, Zhenwei
    Zhai, Xinya
    Borjigen, Durengjan
    Jiang, Zhiguo
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: SPACE EXPLORATION TECHNOLOGIES AND APPLICATIONS, 2011, 8196
  • [43] KERNEL BASED SPARSE NMF ALGORITHM FOR HYPERSPECTRAL UNMIXING
    Wang, Wenhong
    Qian, Yuntao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6970 - 6973
  • [44] Subspace Matching Pursuit for Sparse Unmixing of Hyperspectral Data
    Shi, Zhenwei
    Tang, Wei
    Duren, Zhana
    Jiang, Zhiguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3256 - 3274
  • [45] Substance Dependence Constrained Sparse NMF for Hyperspectral Unmixing
    Yuan, Yuan
    Fu, Min
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 2975 - 2986
  • [46] Robust Double Spatial Regularization Sparse Hyperspectral Unmixing
    Li, Fan
    Zhang, Shaoquan
    Deng, Chengzhi
    Liang, Bingkun
    Cao, Jingjing
    Wang, Shengqian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12569 - 12582
  • [47] Reweighted local collaborative sparse regression for hyperspectral unmixing
    Li, Yan
    Zhang, Shaoquan
    Deng, Chengzhi
    Wang, Shengqian
    INFRARED PHYSICS & TECHNOLOGY, 2019, 97 : 277 - 286
  • [48] Fast Hyperspectral Unmixing Using a Multiscale Sparse Regularization
    Ince, Taner
    Dobigeon, Nicolas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [49] Subspace Clustering Constrained Sparse NMF for Hyperspectral Unmixing
    Lu, Xiaoqiang
    Dong, Le
    Yuan, Yuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3007 - 3019
  • [50] Spectral Variability Augmented Sparse Unmixing of Hyperspectral Images
    Zhang, Ge
    Mei, Shaohui
    Xie, Bobo
    Ma, Mingyang
    Zhang, Yifan
    Feng, Yan
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60