SPARSE DISTRIBUTED HYPERSPECTRAL UNMIXING

被引:3
|
作者
Sigurdsson, Jakob [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Bioucas-Dias, Jose M. [2 ,3 ]
机构
[1] Univ Iceland, Dept Elect Engn, Reykjavik, Iceland
[2] Univ Lisbon, Inst Telecomunicacoes, Lisbon, Portugal
[3] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
关键词
Hyperspectral unmixing; feature extraction; blind signal separation; linear unmixing; dyadic cyclic descent; alternating direction method of multipliers; optimization;
D O I
10.1109/IGARSS.2016.7730824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Blind hyperspectral unmixing is the task of jointly estimating the spectral signatures of material in a hyperspectral images and their abundances at each pixel. The size of hyperspectral images are usually very large, which may raise difficulties for classical optimization algorithms, due to limited memory of the hardware used. One solution to this problem is to consider distributed algorithms. In this paper, we develop a distributed sparse hyperspectral unmixing algorithm using the alternating direction method of multipliers (ADMM) algorithm and l(1) sparse regularization. Each sub-problem does not need to have access to the whole hyperspectral image. The algorithm is evaluated using a very large real hyperspectral image.
引用
收藏
页码:6994 / 6997
页数:4
相关论文
共 50 条
  • [31] Local Abundance Regularization for Hyperspectral Sparse Unmixing
    Rizkinia, Mia
    Okuda, Masahiro
    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [32] Hyperspectral Unmixing with Robust Collaborative Sparse Regression
    Li, Chang
    Ma, Yong
    Mei, Xiaoguang
    Liu, Chengyin
    Ma, Jiayi
    REMOTE SENSING, 2016, 8 (07)
  • [33] Manifold Regularized Sparse NMF for Hyperspectral Unmixing
    Lu, Xiaoqiang
    Wu, Hao
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2815 - 2826
  • [34] Sparse unmixing of hyperspectral data with bandwise model
    Li, Chang
    Liu, Yu
    Cheng, Juan
    Song, Rencheng
    Ma, Jiayi
    Sui, Chenhong
    Chen, Xun
    INFORMATION SCIENCES, 2020, 512 : 1424 - 1441
  • [35] SPARSE HYPERSPECTRAL UNMIXING WITH SPATIAL DISCONTINUITY PRESERVATION
    Zhang, Shaoquan
    Li, Jun
    Wu, Zebin
    Plaza, Antonio
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [36] SpectralSpatial Joint Sparse NMF for Hyperspectral Unmixing
    Dong, Le
    Yuan, Yuan
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2391 - 2402
  • [37] Sparse hyperspectral unmixing algorithm supported by sparse difference prior information
    Zhang Z.
    Liao S.
    Sun D.
    Zhang H.
    Wang S.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (08): : 1032 - 1041
  • [38] A Fast Sparse NMF Optimization Algorithm for Hyperspectral Unmixing
    Qu, Kewen
    Li, Zhenqing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1885 - 1902
  • [39] Joint Local Abundance Sparse Unmixing for Hyperspectral Images
    Rizkinia, Mia
    Okuda, Masahiro
    REMOTE SENSING, 2017, 9 (12)
  • [40] ON THE USE OF COLLABORATIVE SPARSE REGRESSION IN HYPERSPECTRAL UNMIXING CHAINS
    Iordache, Marian-Daniel
    Okujeni, Akpona
    van der Linden, Sebastian
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Somers, Ben
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,