Data-driven prognostic techniques for estimation of the remaining useful life of Lithium-ion batteries

被引:0
|
作者
Razavi-Far, Roozbeh [1 ]
Farajzadeh-Zanjani, Maryann [1 ]
Chakrabarti, Shiladitya [1 ]
Saif, Mehrdad [1 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
关键词
Estimation of the remaining useful life; ensemble learning; random forests; neural networks; group method of data handling; neuro-fuzzy systems and Li-ion batteries; MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to study the use of various data-driven techniques for estimating the remaining useful life (RUL) of the Li-ion batteries. These data-driven techniques include neural networks, group method of data handling, neuro-fuzzy networks, and random forests as an ensemble-based system. These prognostic techniques make use of the past and current data to predict the upcoming values of the capacity to estimate the remaining useful life of the battery. This work presents a comparative study of these data-driven prognostic techniques on constant load experimental data collected from Li-ion batteries. Experimental results show that these data-driven prognostic techniques can effectively estimate the remaining useful life of the Li-ion batteries. However, the random forests and neuro-fuzzy techniques outperform other competitors in terms of the RUL prediction error and root mean square error (RMSE), respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Multifeature-based online remaining useful life prediction of lithium-ion batteries in stages using cascaded data-driven algorithm
    Tao, Liujun
    Wu, Huaiyu
    Zheng, Xiujuan
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (05) : 2527 - 2546
  • [32] Particle Filtering based Estimation of Remaining Useful Life of Lithium-ion Batteries Employing Power Fading Data
    Guha, Arijit
    Patra, Amit
    2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2017, : 193 - 198
  • [33] Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic of Lithium-Ion Batteries
    Tiane, Anas
    Okar, Chafik
    Alzayed, Mohamad
    Chaoui, Hicham
    IEEE ACCESS, 2024, 12 : 70334 - 70344
  • [34] Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic of Lithium-Ion Batteries
    Tiane, Anas
    Okar, Chafik
    Alzayed, Mohamad
    Chaoui, Hicham
    IEEE Access, 2024, 12 : 70334 - 70344
  • [35] A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction
    Peng, Jun
    Zheng, Zhiyong
    Zhang, Xiaoyong
    Deng, Kunyuan
    Gao, Kai
    Li, Heng
    Chen, Bin
    Yang, Yingze
    Huang, Zhiwu
    ENERGIES, 2020, 13 (03)
  • [36] A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
    Ren, Lei
    Dong, Jiabao
    Wang, Xiaokang
    Meng, Zihao
    Zhao, Li
    Deen, M. Jamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3478 - 3487
  • [37] Data-driven prognostic framework for remaining useful life prediction
    Motrani A.
    Noureddine R.
    International Journal of Industrial and Systems Engineering, 2023, 43 (02) : 210 - 221
  • [38] A data-driven approach with error compensation and uncertainty quantification for remaining useful life prediction of lithium-ion battery
    Wei, Meng
    Ye, Min
    Wang, Qiao
    Lian, Gaoqi
    Xu, Xinxin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20121 - 20135
  • [39] A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery
    Liu, Kailong
    Shang, Yunlong
    Ouyang, Quan
    Widanage, Widanalage Dhammika
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) : 3170 - 3180
  • [40] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6