Analytical-numerical solution for turbulent jet diffusion flames of hydrogen

被引:0
|
作者
Pereira, F. N. [1 ]
Andreis, G. S. L. [1 ]
De Bortoli, A. L. [2 ]
Marcilio, N. R. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Grad Program Chem Engn, BR-90040040 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Grad Program Appl Math, BR-91509900 Porto Alegre, RS, Brazil
关键词
Analytical-numerical solution; Diffusion flames; Hydrogen; Reduced kinetic mechanism; COMBUSTION; MECHANISM; IGNITION;
D O I
10.1007/s10910-012-0101-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrogen fuel seems to be a good candidate to replace the energy obtained from some fossil fuels. Therefore this work explains the process of obtaining a two-step reduced chemical kinetic mechanism for the hydrogen combustion. The development of a reduced mechanism consists in eliminating reactions that produce negligible influence on the combustion process. Moreover, for this mechanism, we obtain an analytical-numerical solution for a turbulent jet diffusion flame. To quantify the intermediate species, the mixture fraction is decomposed into three parts, each part directly related to the mass fraction of a species. The governing equations are discretized using the second order finite-difference approach and are integrated in time using the second order simplified three-step Runge-Kutta scheme. Obtained results compare favorably with data in the literature for a 50/50 % volume H (2)-N (2) jet diffusion flame. The main advantage of this strategy is the decrease of the work needed to solve the system of governing equations, by one order of magnitude for the hydrogen.
引用
收藏
页码:556 / 568
页数:13
相关论文
共 50 条
  • [31] FURTHER EXPERIMENTS ON TURBULENT JET DIFFUSION FLAMES.
    Bilger, R.W.
    Beck, R.E.
    1975, : 541 - 552
  • [32] Turbulent Superstructures in Inert Jets and Diffusion Jet Flames
    Lemanov, Vadim
    Lukashov, Vladimir
    Sharov, Konstantin
    FLUIDS, 2021, 6 (12)
  • [33] Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics
    V. M. Kakhktsyan
    A. Kh. Khachatryan
    Computational Mathematics and Mathematical Physics, 2013, 53 : 933 - 936
  • [34] Analytical-Numerical Solution of Elliptical Interface Crack Problem
    E.I. Shifrin
    B. Brank
    G. Surace
    International Journal of Fracture, 1998, 94 : 201 - 215
  • [35] Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics
    Kakhktsyan, V. M.
    Khachatryan, A. Kh.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (07) : 933 - 936
  • [36] A NUMERICAL STUDY OF THE TRANSITION OF JET DIFFUSION FLAMES
    YAMASHITA, H
    KUSHIDA, G
    TAKENO, T
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 431 (1882): : 301 - +
  • [37] Numerical and experimental investigation of turbulent DME jet flames
    Bhagatwala, Ankit
    Luo, Zhaoyu
    Shen, Han
    Sutton, Jeffrey A.
    Lu, Tianfeng
    Chen, Jacqueline H.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 1157 - 1166
  • [38] Experimental investigation on the characteristics of turbulent hydrogen jet flames
    Cheng, TS
    Chiou, CR
    COMBUSTION SCIENCE AND TECHNOLOGY, 1998, 136 (1-6) : 81 - 94
  • [39] Analytical-numerical solution for the proximity effect in a tubular screen
    Szczegielniak, Tomasz
    Kusiak, Dariusz
    Jablonski, Pawel
    Piatek, Zygmunt
    PROCEEDINGS OF 19TH INTERNATIONAL CONFERENCE COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING, 2018,
  • [40] Analytical-numerical solution of elliptical interface crack problem
    Shifrin, EI
    Brank, B
    Surace, G
    INTERNATIONAL JOURNAL OF FRACTURE, 1998, 94 (03) : 201 - 215