Analytical-numerical solution for turbulent jet diffusion flames of hydrogen

被引:0
|
作者
Pereira, F. N. [1 ]
Andreis, G. S. L. [1 ]
De Bortoli, A. L. [2 ]
Marcilio, N. R. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Grad Program Chem Engn, BR-90040040 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Grad Program Appl Math, BR-91509900 Porto Alegre, RS, Brazil
关键词
Analytical-numerical solution; Diffusion flames; Hydrogen; Reduced kinetic mechanism; COMBUSTION; MECHANISM; IGNITION;
D O I
10.1007/s10910-012-0101-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrogen fuel seems to be a good candidate to replace the energy obtained from some fossil fuels. Therefore this work explains the process of obtaining a two-step reduced chemical kinetic mechanism for the hydrogen combustion. The development of a reduced mechanism consists in eliminating reactions that produce negligible influence on the combustion process. Moreover, for this mechanism, we obtain an analytical-numerical solution for a turbulent jet diffusion flame. To quantify the intermediate species, the mixture fraction is decomposed into three parts, each part directly related to the mass fraction of a species. The governing equations are discretized using the second order finite-difference approach and are integrated in time using the second order simplified three-step Runge-Kutta scheme. Obtained results compare favorably with data in the literature for a 50/50 % volume H (2)-N (2) jet diffusion flame. The main advantage of this strategy is the decrease of the work needed to solve the system of governing equations, by one order of magnitude for the hydrogen.
引用
收藏
页码:556 / 568
页数:13
相关论文
共 50 条
  • [21] Formation of turbulent eddies in jet diffusion flames
    Ikegami, M
    Shioji, M
    Kawanabe, H
    Yamane, K
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 1996, 39 (02) : 433 - 439
  • [22] The blowout mechanism of turbulent jet diffusion flames
    Wu, Chih-Yung
    Chao, Yei-Chin
    Cheng, Tsarng-Sheng
    Li, Yueh-Heng
    Lee, Kuo-Yuan
    Yuan, Tony
    COMBUSTION AND FLAME, 2006, 145 (03) : 481 - 494
  • [23] STUDY ON STRUCTURE OF TURBULENT JET DIFFUSION FLAMES
    TAKENO, T
    KOTANI, Y
    COMBUSTION SCIENCE AND TECHNOLOGY, 1975, 10 (1-2) : 45 - &
  • [24] LIFTOFF CHARACTERISTICS OF TURBULENT JET DIFFUSION FLAMES
    PETERS, N
    WILLIAMS, FA
    AIAA JOURNAL, 1983, 21 (03) : 423 - 429
  • [25] Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen
    Starner, SH
    Bilger, RW
    Long, MB
    Frank, JH
    Marran, DF
    COMBUSTION SCIENCE AND TECHNOLOGY, 1997, 129 (1-6) : 141 - 163
  • [26] A numerical study of the structure of methane-hydrogen blended fuel turbulent jet flames
    Choudhuri, AR
    Gollahalli, SR
    2002 37TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE (IECEC), 2002, : 422 - 429
  • [27] A NUMERICAL METHOD FOR THE SOLUTION OF CONFINED CO-FLOWING JET DIFFUSION FLAMES
    Lorenzzetti, G. S.
    De Bortoli, A. L.
    Marczak, L. D. F.
    LATIN AMERICAN APPLIED RESEARCH, 2012, 42 (01) : 27 - 32
  • [28] Detailed soot modeling in turbulent jet diffusion flames
    Bai, XS
    Balthasar, M
    Mauss, F
    Fuchs, L
    TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1998, : 1623 - 1630
  • [29] Multiple mapping conditioning of turbulent jet diffusion flames
    Vogiatzaki, K.
    Kronenburg, A.
    Cleary, M. J.
    Kent, J. H.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 1679 - 1685
  • [30] EXPERIMENTAL STUDY OF TURBULENT JET DIFFUSION FLAMES.
    Sonju, Otto Kristian
    Hustad, Johan
    1600, (12):