Analytical-numerical solution for turbulent jet diffusion flames of hydrogen

被引:0
|
作者
Pereira, F. N. [1 ]
Andreis, G. S. L. [1 ]
De Bortoli, A. L. [2 ]
Marcilio, N. R. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Grad Program Chem Engn, BR-90040040 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Grad Program Appl Math, BR-91509900 Porto Alegre, RS, Brazil
关键词
Analytical-numerical solution; Diffusion flames; Hydrogen; Reduced kinetic mechanism; COMBUSTION; MECHANISM; IGNITION;
D O I
10.1007/s10910-012-0101-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrogen fuel seems to be a good candidate to replace the energy obtained from some fossil fuels. Therefore this work explains the process of obtaining a two-step reduced chemical kinetic mechanism for the hydrogen combustion. The development of a reduced mechanism consists in eliminating reactions that produce negligible influence on the combustion process. Moreover, for this mechanism, we obtain an analytical-numerical solution for a turbulent jet diffusion flame. To quantify the intermediate species, the mixture fraction is decomposed into three parts, each part directly related to the mass fraction of a species. The governing equations are discretized using the second order finite-difference approach and are integrated in time using the second order simplified three-step Runge-Kutta scheme. Obtained results compare favorably with data in the literature for a 50/50 % volume H (2)-N (2) jet diffusion flame. The main advantage of this strategy is the decrease of the work needed to solve the system of governing equations, by one order of magnitude for the hydrogen.
引用
收藏
页码:556 / 568
页数:13
相关论文
共 50 条
  • [1] Analytical-numerical solution for turbulent jet diffusion flames of hydrogen
    F. N. Pereira
    G. S. L. Andreis
    A. L. De Bortoli
    N. R. Marcílio
    Journal of Mathematical Chemistry, 2013, 51 : 556 - 568
  • [2] Development of an analytical-numerical solution for a steady and axisymmetric turbulent jet diffusion flame for the hydrogen based on a reduced kinetic mechanism
    Pereira, F. N.
    Andreis, G. S. L.
    De Bortoli, A. L.
    Marcilio, N. R.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (04) : 1315 - 1325
  • [3] ANALYTICAL SOLUTION TO THE FLAME TRAJECTORY BASED ON THE ANALYSIS OF SCALING OF BUOYANT TURBULENT JET DIFFUSION FLAMES
    GORE, JP
    JIAN, CQ
    COMBUSTION AND FLAME, 1993, 93 (03) : 336 - 337
  • [4] Numerical simulation of confined turbulent jet diffusion flames of methane
    Chen, JG
    Chen, HX
    Fu, S
    RECENT ADVANCES IN FLUID MECHANICS, 2004, : 869 - 872
  • [5] Structure of turbulent hydrogen jet diffusion flames with or without swirl
    Takahashi, F
    Vangsness, MD
    Durbin, MD
    Schmoll, WJ
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (04): : 877 - 884
  • [6] Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen
    Krarraz, Naima
    Sabeur, Amina
    Safer, Khadidja
    Ouadha, Ahmed
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2024, 20 (01): : 96 - 96
  • [7] Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen
    Krarraz, Naima
    Sabeur, Amina
    Safer, Khadidja
    Ouadha, Ahmed
    Fluid Dynamics and Materials Processing, 2024, 20 (01): : 79 - 96
  • [8] Calculating turbulent diffusion jet flames
    Meagher, J. P.
    HYDROCARBON PROCESSING, 2010, 89 (02): : 69 - +
  • [9] MEASUREMENTS IN TURBULENT JET DIFFUSION FLAMES
    KENT, JH
    BILGER, RW
    COMBUSTION AND FLAME, 1973, 20 (02) : 291 - 291
  • [10] THE STRUCTURE OF TURBULENT JET DIFFUSION FLAMES
    PETERS, N
    CHEMIE INGENIEUR TECHNIK, 1983, 55 (10) : 743 - 751