Solvability and nilpotency of Novikov algebras

被引:17
|
作者
Shestakov, Ivan [1 ,2 ]
Zhang, Zerui [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Sobolev Inst Math, Novosibirsk, Russia
基金
巴西圣保罗研究基金会;
关键词
Solvable Novikov algebra; automorphism; nilpotent Novikov algebra; THEOREM;
D O I
10.1080/00927872.2020.1789652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove that a left Novikov algebraNis right nilpotent if and only if it is solvable. Then we show that, every Novikov algebra that can be represented as the sum of two solvable subalgebras is itself solvable, moreover, if the two solvable subalgebras are abelian, then the whole algebra is metabelian. Finally, we show that for every n >= 2, every n-generated non-abelian free solvable (or non-abelian free right nilpotent) Novikov algebra has wild automorphisms.
引用
收藏
页码:5412 / 5420
页数:9
相关论文
共 50 条
  • [31] THE FREIHEITSSATZ FOR NOVIKOV ALGEBRAS*
    Makar-Limanov, Leonid
    Umirbaev, Ualbai
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 2 (02): : 228 - 235
  • [32] Classification of Novikov algebras
    Burde, Dietrich
    de Graaf, Willem
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (01) : 1 - 15
  • [33] On fermionic Novikov algebras
    Bai, CM
    Meng, DJ
    He, LG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (47): : 10053 - 10063
  • [34] Semiprime Novikov algebras
    Panasenko, A. S.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (07) : 1369 - 1378
  • [35] Derivations on Novikov algebras
    Bai, CM
    Meng, DJ
    He, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (03) : 507 - 521
  • [36] ON NILPOTENCY OF GRADED ASSOCIATIVE ALGEBRAS
    CHANYSHEV, AD
    MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (02): : 419 - 425
  • [37] On the nilpotency of a pair of Lie algebras
    Gholamian, Ali
    Eghdami, Hossein
    MATEMATIKA, 2016, 32 : 1 - 5
  • [38] Nilpotency property in table algebras
    Barghi, AR
    JOURNAL OF ALGEBRA, 2000, 226 (02) : 875 - 879
  • [39] NILPOTENCY, SOLVABILITY, AND THE TWISTING FUNCTION OF FINITE GROUPS
    Kaplan, Gil
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1722 - 1729
  • [40] Nilpotency of Alternative and Jordan Algebras
    A. V. Popov
    Siberian Mathematical Journal, 2021, 62 : 148 - 158