Solvability and nilpotency of Novikov algebras

被引:17
|
作者
Shestakov, Ivan [1 ,2 ]
Zhang, Zerui [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Sobolev Inst Math, Novosibirsk, Russia
基金
巴西圣保罗研究基金会;
关键词
Solvable Novikov algebra; automorphism; nilpotent Novikov algebra; THEOREM;
D O I
10.1080/00927872.2020.1789652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove that a left Novikov algebraNis right nilpotent if and only if it is solvable. Then we show that, every Novikov algebra that can be represented as the sum of two solvable subalgebras is itself solvable, moreover, if the two solvable subalgebras are abelian, then the whole algebra is metabelian. Finally, we show that for every n >= 2, every n-generated non-abelian free solvable (or non-abelian free right nilpotent) Novikov algebra has wild automorphisms.
引用
收藏
页码:5412 / 5420
页数:9
相关论文
共 50 条
  • [21] On Nilpotency and Solvability of Lie Crossed Modules
    Rad, M. Jamshidi
    Saeedi, F.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (04) : 491 - 504
  • [22] Embedding Novikov–Poisson algebras in Novikov–Poisson algebras of vector type
    A. S. Zakharov
    Algebra and Logic, 2013, 52 : 236 - 249
  • [23] Noncommutative Novikov algebras
    Sartayev, Bauyrzhan
    Kolesnikov, Pavel
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (02)
  • [24] On Homotopes of Novikov Algebras
    V. A. Sereda
    V. T. Filippov
    Siberian Mathematical Journal, 2002, 43 (1) : 1 - 7
  • [25] Noncommutative Novikov algebras
    Bauyrzhan Sartayev
    Pavel Kolesnikov
    European Journal of Mathematics, 2023, 9
  • [26] NILPOTENCY OF BANACH NIL ALGEBRAS
    GRABINER, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (02) : 510 - &
  • [27] Classification of Novikov algebras
    Dietrich Burde
    Willem de Graaf
    Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 1 - 15
  • [28] On homotopes of Novikov algebras
    Sereda, VA
    Filippov, VT
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (01) : 140 - 146
  • [29] Derivations on Novikov Algebras
    Chengming Bai
    Daoji Meng
    Sui He
    International Journal of Theoretical Physics, 2003, 42 : 507 - 521
  • [30] On radicals of Novikov algebras
    Panasenko, Alexander Sergeevich
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) : 140 - 147