Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature

被引:15
|
作者
Maziero, J. [1 ]
Auccaise, R. [2 ]
Celeri, L. C. [3 ]
Soares-Pinto, D. O. [4 ]
deAzevedo, E. R. [4 ]
Bonagamba, T. J. [4 ]
Sarthour, R. S. [5 ]
Oliveira, I. S. [5 ]
Serra, R. M. [6 ]
机构
[1] Univ Fed Pampa, BR-96413170 Bage, RS, Brazil
[2] Empresa Brasileira Pesquisa Agropecuaria, BR-22460000 Rio De Janeiro, Brazil
[3] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[4] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[5] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[6] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum information; Quantum discord; Nonclassical correlations; Nuclear magnetic resonance; STATES; SPECTROSCOPY; DYNAMICS; PULSES; DESIGN; SPINS;
D O I
10.1007/s13538-013-0118-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the theoretical and the experimental researches aimed at quantifying or identifying quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We first overview, at the formal level, a method to determine the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we describe an experimental implementation of that method. Previous theoretical analysis of quantum discord decoherence had predicted the time dependence of the discord to change suddenly under the influence of phase noise. The experiment attests to the robustness of the effect, sufficient to confirm the theoretical prediction even under the additional influence of a thermal environment. Finally, we discuss an observable witness for the quantumness of correlations in two-qubit systems and its first NMR implementation. Should the nature, not the amount, of the correlation be under scrutiny, the witness offers the most attractive alternative.
引用
收藏
页码:86 / 104
页数:19
相关论文
共 50 条
  • [41] ENHANCED DOUBLE QUANTUM SIGNALS IN NUCLEAR MAGNETIC RESONANCE
    COHEN, AD
    WHIFFEN, DH
    MOLECULAR PHYSICS, 1964, 7 (05) : 449 - &
  • [42] Geometric quantum computation using nuclear magnetic resonance
    Jones, JA
    Vedral, V
    Ekert, A
    Castagnoli, G
    NATURE, 2000, 403 (6772) : 869 - 871
  • [43] Quantum information processing through nuclear magnetic resonance
    Bulnes, JD
    Bonk, FA
    Sarthour, RS
    de Azevedo, ER
    Freitas, JCC
    Bonagamba, TJ
    Oliveira, IS
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (3A) : 617 - 625
  • [44] MULTIPLE-QUANTUM TRANSITIONS IN NUCLEAR MAGNETIC RESONANCE
    YATSIV, S
    PHYSICAL REVIEW, 1959, 113 (06): : 1522 - 1537
  • [45] Nuclear magnetic resonance implementation of quantum chaotic maps
    Weinstein, YS
    Lloyd, S
    Emerson, JV
    Cory, DG
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 434 - 437
  • [46] Nuclear magnetic resonance: a quantum technology for computation and spectroscopy
    Cummins, HK
    Jones, JA
    CONTEMPORARY PHYSICS, 2000, 41 (06) : 383 - 399
  • [47] Nuclear magnetic resonance quantum information processing INTRODUCTION
    Serra, R. M.
    Oliveira, I. S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1976): : 4615 - 4619
  • [48] Geometric quantum computation using nuclear magnetic resonance
    Jonathan A. Jones
    Vlatko Vedral
    Artur Ekert
    Giuseppe Castagnoli
    Nature, 2000, 403 : 869 - 871
  • [49] Quantum statistical corrections to dynamic nuclear magnetic resonance
    Mueller, LJ
    Weitekamp, DP
    SCIENCE, 1999, 283 (5398) : 61 - 65
  • [50] Kinetics of resonance luminescence of a single quantum dot at room temperature
    Leonov, M. Yu
    Turkov, V. K.
    Rukhlenko, I. D.
    Fedorov, A. V.
    OPTICS AND SPECTROSCOPY, 2012, 113 (03) : 265 - 270