Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature

被引:15
|
作者
Maziero, J. [1 ]
Auccaise, R. [2 ]
Celeri, L. C. [3 ]
Soares-Pinto, D. O. [4 ]
deAzevedo, E. R. [4 ]
Bonagamba, T. J. [4 ]
Sarthour, R. S. [5 ]
Oliveira, I. S. [5 ]
Serra, R. M. [6 ]
机构
[1] Univ Fed Pampa, BR-96413170 Bage, RS, Brazil
[2] Empresa Brasileira Pesquisa Agropecuaria, BR-22460000 Rio De Janeiro, Brazil
[3] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[4] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[5] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[6] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum information; Quantum discord; Nonclassical correlations; Nuclear magnetic resonance; STATES; SPECTROSCOPY; DYNAMICS; PULSES; DESIGN; SPINS;
D O I
10.1007/s13538-013-0118-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the theoretical and the experimental researches aimed at quantifying or identifying quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We first overview, at the formal level, a method to determine the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we describe an experimental implementation of that method. Previous theoretical analysis of quantum discord decoherence had predicted the time dependence of the discord to change suddenly under the influence of phase noise. The experiment attests to the robustness of the effect, sufficient to confirm the theoretical prediction even under the additional influence of a thermal environment. Finally, we discuss an observable witness for the quantumness of correlations in two-qubit systems and its first NMR implementation. Should the nature, not the amount, of the correlation be under scrutiny, the witness offers the most attractive alternative.
引用
收藏
页码:86 / 104
页数:19
相关论文
共 50 条
  • [21] Quantum simulations with nuclear magnetic resonance system
    邱楚丹
    聂新芳
    鲁大为
    Chinese Physics B, 2021, 30 (04) : 46 - 55
  • [22] Nuclear Spin Quantum Memories in Quantum Dots Revealed by Nuclear Magnetic Resonance
    Petrov, Mikhail
    2015 17th International Conference on Transparent Optical Networks (ICTON), 2015,
  • [23] Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer
    Jones, JA
    Mosca, M
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (05): : 1648 - 1653
  • [24] Nuclear magnetic resonance on room temperature samples in nanotesla fields using a two-stage dc superconducting quantum interference device sensor
    Koerber, R.
    Casey, A.
    Shibahara, A.
    Piscitelli, M.
    Cowan, B. P.
    Lusher, C. P.
    Saunders, J.
    APPLIED PHYSICS LETTERS, 2007, 91 (14)
  • [25] TEMPERATURE DEPENDENCE OF NUCLEAR MAGNETIC RESONANCE IN METALS
    KAPLAN, JI
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (03): : 338 - &
  • [26] HIGH TEMPERATURE NUCLEAR MAGNETIC RESONANCE PROBE
    ODLE, RL
    FLYNN, CP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1964, 35 (11): : 1611 - &
  • [27] TEMPERATURE DEPENDENCE OF NUCLEAR MAGNETIC RESONANCE OF VANADIUM
    DRAIN, LE
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1964, 83 (5355): : 755 - &
  • [28] PROBES FOR HIGH TEMPERATURE NUCLEAR MAGNETIC RESONANCE
    HAFNER, S
    NACHTRIEB, NH
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1964, 35 (06): : 680 - &
  • [29] TEMPERATURE EFFECTS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
    SLOMP, G
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1959, 30 (11): : 1024 - 1027
  • [30] HIGH-RESOLUTION NUCLEAR MAGNETIC-RESONANCE IN CRYSTAL LIQUID SOLUTIONS AT ROOM-TEMPERATURE
    KLOPPER, D
    VOLKMER, P
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1972, 251 (1-2): : 41 - 48