Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature

被引:15
|
作者
Maziero, J. [1 ]
Auccaise, R. [2 ]
Celeri, L. C. [3 ]
Soares-Pinto, D. O. [4 ]
deAzevedo, E. R. [4 ]
Bonagamba, T. J. [4 ]
Sarthour, R. S. [5 ]
Oliveira, I. S. [5 ]
Serra, R. M. [6 ]
机构
[1] Univ Fed Pampa, BR-96413170 Bage, RS, Brazil
[2] Empresa Brasileira Pesquisa Agropecuaria, BR-22460000 Rio De Janeiro, Brazil
[3] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[4] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[5] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[6] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum information; Quantum discord; Nonclassical correlations; Nuclear magnetic resonance; STATES; SPECTROSCOPY; DYNAMICS; PULSES; DESIGN; SPINS;
D O I
10.1007/s13538-013-0118-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the theoretical and the experimental researches aimed at quantifying or identifying quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We first overview, at the formal level, a method to determine the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we describe an experimental implementation of that method. Previous theoretical analysis of quantum discord decoherence had predicted the time dependence of the discord to change suddenly under the influence of phase noise. The experiment attests to the robustness of the effect, sufficient to confirm the theoretical prediction even under the additional influence of a thermal environment. Finally, we discuss an observable witness for the quantumness of correlations in two-qubit systems and its first NMR implementation. Should the nature, not the amount, of the correlation be under scrutiny, the witness offers the most attractive alternative.
引用
收藏
页码:86 / 104
页数:19
相关论文
共 50 条
  • [1] Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature
    J. Maziero
    R. Auccaise
    L. C. Céleri
    D. O. Soares-Pinto
    E. R. deAzevedo
    T. J. Bonagamba
    R. S. Sarthour
    I. S. Oliveira
    R. M. Serra
    Brazilian Journal of Physics, 2013, 43 : 86 - 104
  • [2] Robustness of quantum discord to sudden death in nuclear magnetic resonance
    胥建卫
    陈起辉
    Chinese Physics B, 2012, 21 (04) : 64 - 70
  • [3] Robustness of quantum discord to sudden death in nuclear magnetic resonance
    Xu Jian-Wei
    Chen Qi-Hui
    CHINESE PHYSICS B, 2012, 21 (04)
  • [4] Quantum battery based on quantum discord at room temperature
    Cruz, Clebson
    Anka, Maron F.
    Reis, Mario S.
    Bachelard, Romain
    Santos, Alan C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (02)
  • [5] Quantum control of nuclear magnetic resonance spin systems
    Li Jun
    Cui Jiang-Yu
    Yang Xiao-Dong
    Luo Zhi-Huang
    Pan Jian
    Yu Qi
    Li Zhao-Kai
    Peng Xin-Hua
    Du Jiang-Feng
    ACTA PHYSICA SINICA, 2015, 64 (16)
  • [6] Mechanically detected nuclear magnetic resonance at room temperature and normal pressure
    Schaff, A
    Veeman, WS
    JOURNAL OF MAGNETIC RESONANCE, 1997, 126 (02) : 200 - 206
  • [7] Stochastic resonance of quantum discord
    Lee, Chee Kong
    Kwek, Leong Chuan
    Cao, Jianshu
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [8] A Review of Geometric Optimal Control for Quantum Systems in Nuclear Magnetic Resonance
    Bonnard, Bernard
    Glaser, Steffen J.
    Sugny, Dominique
    ADVANCES IN MATHEMATICAL PHYSICS, 2012, 2012
  • [9] Nuclear magnetic resonance quantum computation
    Jones, JA
    QUANTUM ENTANGLEMENT AND INFORMATION PROCESSING, 2004, 79 : 357 - +
  • [10] Quantum computing and nuclear magnetic resonance
    Jones, JA
    PHYSCHEMCOMM, 2001, (11): : 1 - 8