A Tree-Based Machine Learning Method for Pipeline Leakage Detection

被引:13
|
作者
Shen, Yongxin [1 ]
Cheng, Weiping [1 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
关键词
water distribution system; leak detection; machine learning; Adaboost model; random forest model; GALVANIZED STEEL PIPE;
D O I
10.3390/w14182833
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leak detection techniques based on Machine Learning (ML) models can assist or even replace manual work in leak detection operations in water distribution systems (WDSs). However, studies on leakage detection based on on-site leak signals are limited compared to studies on lab-scale leak detection. The on-site leak signals have stronger interference and randomness, while leak signals in the laboratory are relatively simpler. To better assist on-site leak detection operations, the present paper develops and compares three ML-based models. For this purpose, many on-site tests were carried out, and tens of thousands of sets of on-site leak detection signals were collected. More than 6000 sets of these signals were marked and the signal features were extracted and analyzed from a statistical point of view. It was found that features such as the main frequency, the spectral roll-off rate, the spectral flatness, and one-dimensional (1-D) Mel Frequency Cepstrum Coefficient (MFCC) could well distinguish the leakage signals from non-leakage signals. After training the decision tree model, the performances of the random forest and Adaboost models were thoroughly compared. It was found that the false positive rates of the three models were 9.80%, 8.27% and 7.35%, all lower than 10%. In particular, the Adaboost model had the lowest false positive rate of 7.35%. The recall rate of the random forest and Adaboost models were 100% and 99.52%.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning
    Dogruel, Merve
    Kara, Selin Soner
    ACTA INFOLOGICA, 2023, 7 (02): : 243 - 252
  • [32] Land subsidence modelling using tree-based machine learning algorithms
    Rahmati, Omid
    Falah, Fatemeh
    Naghibi, Seyed Amir
    Biggs, Trent
    Soltani, Milad
    Deo, Ravinesh C.
    Cerda, Artemi
    Mohammadi, Farnoush
    Dieu Tien Bui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 672 : 239 - 252
  • [33] Discussion on the tree-based machine learning model in the study of landslide susceptibility
    Liu, Qiang
    Tang, Aiping
    Huang, Ziyuan
    Sun, Lixin
    Han, Xiaosheng
    NATURAL HAZARDS, 2022, 113 (02) : 887 - 911
  • [34] Discussion on the tree-based machine learning model in the study of landslide susceptibility
    Qiang Liu
    Aiping Tang
    Ziyuan Huang
    Lixin Sun
    Xiaosheng Han
    Natural Hazards, 2022, 113 : 887 - 911
  • [35] Faster Convergence with Lexicase Selection in Tree-Based Automated Machine Learning
    Matsumoto, Nicholas
    Saini, Anil Kumar
    Ribeiro, Pedro
    Choi, Hyunjun
    Orlenko, Alena
    Lyytikainen, Leo-Pekka
    Laurikka, Jari O.
    Lehtimaki, Terho
    Batista, Sandra
    Moore, Jason H.
    GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 165 - 181
  • [36] Intrusion Detection and Identification Using Tree-Based Machine Learning Algorithms on DCS Network in the Oil Refinery
    Kim, Kyoung Ho
    Kwak, Byung Il
    Han, Mee Lan
    Kim, Huy Kang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (06) : 4673 - 4682
  • [37] A tree-based machine learning methodology to automatically classify software vulnerabilities
    Aivatoglou, Georgios
    Anastasiadis, Mike
    Spanos, Georgios
    Voulgaridis, Antonis
    Votis, Konstantinos
    Tzovaras, Dimitrios
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 312 - 317
  • [38] The Predictability of Tree-based Machine Learning Algorithms in the Big Data Context
    Qolipour, F.
    Ghasemzadeh, M.
    Mohammad-Karimi, N.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (01): : 82 - 89
  • [39] Pipeline leakage aperture identification method based on pseudolabel learning
    Yuan, Li
    Lang, Xianming
    Zhang, Zhouhua
    Liu, Qiang
    Cao, Jiangtao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [40] Study on vibration signals identification method for pipeline leakage detection based on deep learning technology
    Zhang, Chengsan
    Liu, Shouling
    Zhao, Wenan
    Dong, Lulu
    Zhang, Yu
    Wang, Chen
    Qu, Shuai
    Yao, Chunmei
    Lv, Jingsheng
    Li, Shujuan
    Zhao, Qingchao
    Shang, Ying
    Liu, Guangqiang
    Ni, Jiasheng
    OPTICS COMMUNICATIONS, 2024, 565