Intrusion Detection and Identification Using Tree-Based Machine Learning Algorithms on DCS Network in the Oil Refinery

被引:10
|
作者
Kim, Kyoung Ho [1 ]
Kwak, Byung Il [2 ]
Han, Mee Lan [1 ]
Kim, Huy Kang [1 ]
机构
[1] Korea Univ, Sch Cybersecur, Seoul 02841, South Korea
[2] Hallym Univ, Sch Software, Gangwon Do 24252, South Korea
关键词
Integrated circuits; Security; Servers; Protocols; Sensor systems; Workstations; Process control; Industrial control system; distributed control system; intrusion detection; attack identification;
D O I
10.1109/TPWRS.2022.3150084
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, Critical Infrastructures (CI) such as energy, power, transportation, and communication have come to be increasingly dependent on advanced information and communication technology (ICT). This change has increased the connection between the Industrial Control System (ICS) supporting the CI and the Internet, resulting in an increase in security threats and allowing a malicious attacker to manipulate and control the ICS arbitrarily. On the other hand, ICS operators are reluctant to install security systems for fear of adverse effects on normal operations due to system changes. Therefore, new research is needed to detect anomalies quickly and identify attack types while ensuring the high availability of ICS. This study proposes a host-based method to detect and identify abnormalities in an Oil Refinery's Distributed Control System (DCS) network using DCS vendor-proprietary protocols using a proposed method based on the tree-based machine learning algorithm. The results demonstrate that the proposed method can effectively detect an abnormality with the eXtreme Gradient Boosting (XGB) classifier, with up to 99% accuracy. Taken together, the results of this study contribute to the accurate detection of abnormal events and identification of attack types on the network without disrupting the normal operation of the DCS in the Oil Refinery.
引用
收藏
页码:4673 / 4682
页数:10
相关论文
共 50 条
  • [1] Evaluation of Tree-Based Machine Learning Algorithms for Network Intrusion Detection in the Internet of Things
    Essa, Mohamed Saied
    Guirguis, Shawkat Kamal
    IT PROFESSIONAL, 2023, 25 (05) : 45 - 56
  • [2] Malware Detection Method using Tree-based Machine Learning Algorithms
    Okada, Satoshi
    Matsuda, Wataru
    Fujimoto, Mariko
    Mitsunaga, Takuho
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING (ICOCO), 2021, : 103 - 108
  • [3] Detecting Generic Network Intrusion Attacks using Tree-based Machine Learning Methods
    Alsariera, Yazan Ahmad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 597 - 603
  • [4] Detection of cardiovascular disease cases using advanced tree-based machine learning algorithms
    Asadi, Fariba
    Homayounfar, Reza
    Mehrali, Yaser
    Masci, Chiara
    Talebi, Samaneh
    Zayeri, Farid
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [6] Land subsidence modelling using tree-based machine learning algorithms
    Rahmati, Omid
    Falah, Fatemeh
    Naghibi, Seyed Amir
    Biggs, Trent
    Soltani, Milad
    Deo, Ravinesh C.
    Cerda, Artemi
    Mohammadi, Farnoush
    Dieu Tien Bui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 672 : 239 - 252
  • [7] A Comparative Analysis of Tree-based Machine Learning Algorithms for Breast Cancer Detection
    A'la, Fiddin Yusfida
    Permanasari, Adhistya Erna
    Setiawan, Noor Akhmad
    PROCEEDINGS OF 2019 12TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2019, : 55 - 59
  • [8] Network intrusion detection using oversampling technique and machine learning algorithms
    Ahmed, Hafiza Anisa
    Hameed, Anum
    Bawany, Narmeen Zakaria
    PEERJ COMPUTER SCIENCE, 2022, 8 : 1 - 19
  • [9] Enhancing Network Intrusion Detection Model Using Machine Learning Algorithms
    Awad, Nancy Awadallah
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01): : 979 - 990
  • [10] Network intrusion detection using oversampling technique and machine learning algorithms
    Ahmed H.A.
    Hameed A.
    Bawany N.Z.
    PeerJ Computer Science, 2022, 8