Using Feature Entropy to Guide Filter Pruning for Efficient Convolutional Networks

被引:9
|
作者
Li, Yun [1 ]
Wang, Luyang [1 ]
Peng, Sifan [1 ]
Kumar, Aakash [1 ]
Yin, Baoqun [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China
关键词
Convolutional neural networks; Filter pruning; Entropy; Features selection module;
D O I
10.1007/978-3-030-30484-3_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of convolutional neural networks (CNNs) is usually accompanied by an increase in model volume and computational cost. In this paper, we propose an entropy-based filter pruning (EFP) method to learn more efficient CNNs. Different from many existing filter pruning approaches, our proposed method prunes unimportant filters based on the amount of information carried by their corresponding feature maps. We employ entropy to measure the information contained in the feature maps and design features selection module to formulate pruning strategies. Pruning and fine-tuning are iterated several times, yielding thin and more compact models with comparable accuracy. We empirically demonstrate the effectiveness of our method with many advanced CNNs on several benchmark datasets. Notably, for VGG-16 on CIFAR-10, our EFP method prunes 92.9% parameters and reduces 76% float-point-operations (FLOPs) without accuracy loss, which has advanced the state-of-the-art.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
  • [31] Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Ding, Yuhang
    Liu, Ping
    Zhu, Linchao
    Zhang, Hanwang
    Yang, Yi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2006 - 2015
  • [32] Efficient Convolution Neural Networks for Object Tracking Using Separable Convolution and Filter Pruning
    Mao, Yuanhong
    He, Zhanzhuang
    Ma, Zhong
    Tang, Xuehan
    Wang, Zhuping
    IEEE ACCESS, 2019, 7 (106466-106474) : 106466 - 106474
  • [33] Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning
    Yang, Tien-Ju
    Chen, Yu-Hsin
    Sze, Vivienne
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6071 - 6079
  • [34] Efficient Hardware Realization of Convolutional Neural Networks using Intra-Kernel Regular Pruning
    Yang, Maurice
    Faraj, Mahmoud
    Hussein, Assem
    Gaudet, Vincent
    2018 IEEE 48TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2018), 2018, : 180 - 185
  • [35] Information Entropy Based Feature Pooling for Convolutional Neural Networks
    Wan, Weitao
    Chen, Jiansheng
    Li, Tianpeng
    Huang, Yiqing
    Tian, Jingqi
    Yu, Cheng
    Xue, Youze
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3404 - 3413
  • [36] FILTER PRUNING BASED ON LOCAL GRADIENT ACTIVATION MAPPING IN CONVOLUTIONAL NEURAL NETWORKS
    Intraraprasit, Monthon
    Chitsobhuk, Orachat
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (06): : 1697 - 1715
  • [37] An optimal-score-based filter pruning for deep convolutional neural networks
    Sawant, Shrutika S.
    Bauer, J.
    Erick, F. X.
    Ingaleshwar, Subodh
    Holzer, N.
    Ramming, A.
    Lang, E. W.
    Goetz, Th
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17557 - 17579
  • [38] Hardware-Aware Evolutionary Explainable Filter Pruning for Convolutional Neural Networks
    Christian Heidorn
    Muhammad Sabih
    Nicolai Meyerhöfer
    Christian Schinabeck
    Jürgen Teich
    Frank Hannig
    International Journal of Parallel Programming, 2024, 52 : 40 - 58
  • [39] Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Liu, Ping
    Wang, Ziwei
    Hu, Zhilan
    Yang, Yi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4335 - 4344
  • [40] Structured Pruning for Efficient Convolutional Neural Networks via Incremental Regularization
    Wang, Huan
    Hu, Xinyi
    Zhang, Qiming
    Wang, Yuehai
    Yu, Lu
    Hu, Haoji
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 775 - 788