Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration

被引:186
|
作者
He, Yang [1 ]
Ding, Yuhang [2 ]
Liu, Ping [1 ]
Zhu, Linchao [1 ]
Zhang, Hanwang [3 ]
Yang, Yi [1 ]
机构
[1] Univ Technol Sydney, ReLER, Sydney, NSW, Australia
[2] Baidu Res, Beijing, Peoples R China
[3] Nanyang Technol Univ, Singapore, Singapore
关键词
D O I
10.1109/CVPR42600.2020.00208
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Filter pruning has been widely applied to neural network compression and acceleration. Existing methods usually utilize pre-defined pruning criteria, such as l(p)-norm, to prune unimportant filters. There are two major limitations to these methods. First, prevailing methods fail to consider the variety of filter distribution across layers. To extract features of the coarse level to the fine level, the filters of different layers have various distributions. Therefore, it is not suitable to utilize the same pruning criteria to different functional layers. Second, prevailing layer-by-layer pruning methods process each layer independently and sequentially, failing to consider that all the layers in the network collaboratively make the final prediction. In this paper, we propose Learning Filter Pruning Criteria (LFPC) to solve the above problems. Specifically, we develop a differentiable pruning criteria sampler. This sampler is learnable and optimized by the validation loss of the pruned network obtained from the sampled criteria. In this way, we could adaptively select the appropriate pruning criteria for different functional layers. Besides, when evaluating the sampled criteria, LFPC comprehensively considers the contribution of all the layers at the same time. Experiments validate our approach on three image classification benchmarks. Notably, on ILSVRC-2012, our LFPC reduces more than 60% FLOPs on ResNet-50 with only 0.83% top-5 accuracy loss.
引用
收藏
页码:2006 / 2015
页数:10
相关论文
共 50 条
  • [1] Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning
    Singh, Pravendra
    Verma, Vinay Kumar
    Rai, Piyush
    Namboodiri, Vinay P.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 838 - 847
  • [2] Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Liu, Ping
    Wang, Ziwei
    Hu, Zhilan
    Yang, Yi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4335 - 4344
  • [3] Filter pruning via annealing decaying for deep convolutional neural networks acceleration
    Huang, Jiawen
    Xiong, Liyan
    Huang, Xiaohui
    Chen, Qingsen
    Huang, Peng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [4] Filter Pruning for Efficient Transfer Learning in Deep Convolutional Neural Networks
    Reinhold, Caique
    Roisenberg, Mauro
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 191 - 202
  • [5] HFP: Hardware-Aware Filter Pruning for Deep Convolutional Neural Networks Acceleration
    Yu, Fang
    Han, Chuanqi
    Wang, Pengcheng
    Huang, Ruoran
    Huang, Xi
    Cui, Li
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 255 - 262
  • [6] Fpar: filter pruning via attention and rank enhancement for deep convolutional neural networks acceleration
    Chen, Yanming
    Wu, Gang
    Shuai, Mingrui
    Lou, Shubin
    Zhang, Yiwen
    An, Zhulin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2973 - 2985
  • [7] Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
    He, Yang
    Dong, Xuanyi
    Kang, Guoliang
    Fu, Yanwei
    Yan, Chenggang
    Yang, Yi
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3594 - 3604
  • [8] Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
    He, Yang
    Kang, Guoliang
    Dong, Xuanyi
    Fu, Yanwei
    Yang, Yi
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2234 - 2240
  • [9] FPC: Filter pruning via the contribution of output feature map for deep convolutional neural networks acceleration
    Chen, Yanming
    Wen, Xiang
    Zhang, Yiwen
    He, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [10] FRACTIONAL STEP DISCRIMINANT PRUNING: A FILTER PRUNING FRAMEWORK FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
    Gkalelis, Nikolaos
    Mezaris, Vasileios
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2020,