Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

被引:422
|
作者
Haney, Paul M. [1 ]
Lee, Hyun-Woo [2 ,3 ]
Lee, Kyung-Jin [1 ,4 ,5 ,6 ]
Manchon, Aurelien [7 ]
Stiles, M. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Pohang Univ Sci & Technol, PCTP, Kyungbuk 790784, South Korea
[3] Pohang Univ Sci & Technol, Dept Phys, Kyungbuk 790784, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[5] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136713, South Korea
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[7] KAUST, Core Labs, Thuwal 239556900, Saudi Arabia
关键词
DOMAIN-WALL MOTION; MAGNETIZATION DYNAMICS; MAGNETORESISTANCE;
D O I
10.1103/PhysRevB.87.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Spin-orbit coupling and spin current in mesoscopic devices
    YanXia Xing
    QingFeng Sun
    Science China Physics, Mechanics and Astronomy, 2013, 56 : 196 - 206
  • [42] Direct and inverse spin-orbit torques
    Freimuth, Frank
    Bluegel, Stefan
    Mokrousov, Yuriy
    PHYSICAL REVIEW B, 2015, 92 (06)
  • [43] A new twist on spin-orbit torques
    Pacchioni, Giulia
    NATURE REVIEWS MATERIALS, 2024, 9 (07): : 453 - 453
  • [44] Interfacial Spin-Orbit Coupling: A Platform for Superconducting Spintronics
    Martinez, Isidoro
    Hogl, Petra
    Gonzalez-Ruano, Cesar
    Cascales, Juan Pedro
    Tiusan, Coriolan
    Lu, Yuan
    Hehn, Michel
    Matos-Abiague, Alex
    Fabian, Jaroslav
    Zutic, Igor
    Aliev, Farkhad G.
    PHYSICAL REVIEW APPLIED, 2020, 13 (01)
  • [45] SPINTRONICS Anatomy of spin-orbit torques
    Yamamoto, Kei
    Kurebayashi, Hidekazu
    NATURE NANOTECHNOLOGY, 2017, 12 (10) : 941 - 942
  • [46] Interfacial symmetry breaking induced spin-orbit coupling in wurtzite GaN nanowires
    Liu, Xingchen
    Guan, Hongming
    Tang, Ning
    Lv, Yuanjie
    Chen, Ling
    Zhang, Xiaoyue
    Zhang, Shixiong
    Zhang, Yunfan
    Wang, Xinqiang
    Ge, Weikun
    Shen, Bo
    APPLIED PHYSICS LETTERS, 2021, 118 (12)
  • [47] Polarized electric current in semiclassical transport with spin-orbit interaction
    Silvestrov, P. G.
    Mishchenko, E. G.
    PHYSICAL REVIEW B, 2006, 74 (16)
  • [48] Effect of the spin-orbit interaction at insulator/ferromagnet interfaces on spin-orbit torques
    Park, Eun-Sang
    Lee, DongJoon
    Lee, OukJae
    Min, Byoung-Chul
    Koo, Hyun Cheol
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    PHYSICAL REVIEW B, 2021, 103 (13)
  • [49] Self-induced spin-orbit torques in metallic ferromagnets
    Ochoa, Hector
    Zarzuela, Ricardo
    Tserkovnyak, Yaroslav
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 538 (538)
  • [50] Harnessing Orbital-to-Spin Conversion of Interfacial Orbital Currents for Efficient Spin-Orbit Torques
    Ding, Shilei
    Ross, Andrew
    Go, Dongwook
    Baldrati, Lorenzo
    Ren, Zengyao
    Freimuth, Frank
    Becker, Sven
    Kammerbauer, Fabian
    Yang, Jinbo
    Jakob, Gerhard
    Mokrousov, Yuriy
    Klaeui, Mathias
    PHYSICAL REVIEW LETTERS, 2020, 125 (17)