Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

被引:422
|
作者
Haney, Paul M. [1 ]
Lee, Hyun-Woo [2 ,3 ]
Lee, Kyung-Jin [1 ,4 ,5 ,6 ]
Manchon, Aurelien [7 ]
Stiles, M. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Pohang Univ Sci & Technol, PCTP, Kyungbuk 790784, South Korea
[3] Pohang Univ Sci & Technol, Dept Phys, Kyungbuk 790784, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[5] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136713, South Korea
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[7] KAUST, Core Labs, Thuwal 239556900, Saudi Arabia
关键词
DOMAIN-WALL MOTION; MAGNETIZATION DYNAMICS; MAGNETORESISTANCE;
D O I
10.1103/PhysRevB.87.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Semiclassical theory of spin-orbit torques in disordered multiband electron systems
    Xiao, Cong
    Niu, Qian
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [22] Interfacial spin Hall current in a Josephson junction with Rashba spin-orbit coupling
    杨志红
    杨永宏
    汪军
    Chinese Physics B, 2012, (05) : 625 - 630
  • [23] Interfacial spin Hall current in a Josephson junction with Rashba spin-orbit coupling
    Yang Zhi-Hong
    Yang Yong-Hong
    Wang Jun
    CHINESE PHYSICS B, 2012, 21 (05)
  • [24] A review of current research on spin currents and spin-orbit torques
    Feng, Xiao-Yu
    Zhang, Qi-Han
    Zhang, Han-Wen
    Zhang, Yi
    Zhong, Rui
    Lu, Bo-Wen
    Cao, Jiang-Wei
    Fan, Xiao-Long
    CHINESE PHYSICS B, 2019, 28 (10)
  • [25] Effects of Interfacial Oxidization on Magnetic Damping and Spin-Orbit Torques
    Lee, DongJoon
    Jeong, WonMin
    Yun, DeokHyun
    Park, Seung-Young
    Ju, Byeong-Kwon
    Lee, Kyung-Jin
    Min, Byoung-Chul
    Koo, Hyun Cheol
    Lee, OukJae
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (16) : 19414 - 19421
  • [26] Current-induced magnetization switching induced by Rashba and Ising spin-orbit torques
    Zhou, Peng
    Wang, Zhanran
    Liu, Jiarui
    Yu, Zhizhou
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [27] Roadmap of Spin-Orbit Torques
    Shao, Qiming
    Li, Peng
    Liu, Luqiao
    Yang, Hyunsoo
    Fukami, Shunsuke
    Razavi, Armin
    Wu, Hao
    Wang, Kang
    Freimuth, Frank
    Mokrousov, Yuriy
    Stiles, Mark D.
    Emori, Satoru
    Hoffmann, Axel
    Akerman, Johan
    Roy, Kaushik
    Wang, Jian-Ping
    Yang, See-Hun
    Garello, Kevin
    Zhang, Wei
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)
  • [28] Spin current in spin-orbit coupling systems
    Hu, JP
    Bernevig, BA
    Wu, CJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (31-32): : 5991 - 6000
  • [29] Spin-orbit torques in action
    Brataas, Arne
    Hals, Kjetil M. D.
    NATURE NANOTECHNOLOGY, 2014, 9 (02) : 86 - 88
  • [30] Tuning the interfacial spin-orbit coupling with ferroelectricity
    Fang, Mei
    Wang, Yanmei
    Wang, Hui
    Hou, Yusheng
    Vetter, Eric
    Kou, Yunfang
    Yang, Wenting
    Yin, Lifeng
    Xiao, Zhu
    Li, Zhou
    Jiang, Lu
    Lee, Ho Nyung
    Zhang, Shufeng
    Wu, Ruqian
    Xu, Xiaoshan
    Sun, Dali
    Shen, Jian
    NATURE COMMUNICATIONS, 2020, 11 (01)