Impact of ionizing radiation on superconducting qubit coherence

被引:150
|
作者
Vepsalainen, Antti P. [1 ]
Karamlou, Amir H. [1 ]
Orrell, John L. [2 ]
Dogra, Akshunna S. [1 ,4 ]
Loer, Ben [2 ]
Vasconcelos, Francisca [1 ]
Kim, David K. [3 ]
Melville, Alexander J. [3 ]
Niedzielski, Bethany M. [3 ]
Yoder, Jonilyn L. [3 ]
Gustavsson, Simon [1 ]
Formaggio, Joseph A. [1 ]
VanDevender, Brent A. [2 ]
Oliver, William D. [1 ,3 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[3] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02173 USA
[4] Harvard Univ, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
QUANTUM; STATES;
D O I
10.1038/s41586-020-2619-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ionizing radiation from environmental radioactivity and cosmic rays increases the density of broken Cooper pairs in superconducting qubits, reducing their coherence times, but can be partially mitigated by lead shielding. Technologies that rely on quantum bits (qubits) require long coherence times and high-fidelity operations(1). Superconducting qubits are one of the leading platforms for achieving these objectives(2,3). However, the coherence of superconducting qubits is affected by the breaking of Cooper pairs of electrons(4-6). The experimentally observed density of the broken Cooper pairs, referred to as quasiparticles, is orders of magnitude higher than the value predicted at equilibrium by the Bardeen-Cooper-Schrieffer theory of superconductivity(7-9). Previous work(10-12)has shown that infrared photons considerably increase the quasiparticle density, yet even in the best-isolated systems, it remains much higher(10)than expected, suggesting that another generation mechanism exists(13). Here we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference. The effect of ionizing radiation leads to an elevated quasiparticle density, which we predict would ultimately limit the coherence times of superconducting qubits of the type measured here to milliseconds. We further demonstrate that radiation shielding reduces the flux of ionizing radiation and thereby increases the energy-relaxation time. Albeit a small effect for today's qubits, reducing or mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.
引用
收藏
页码:551 / +
页数:18
相关论文
共 50 条
  • [1] Impact of ionizing radiation on superconducting qubit coherence
    Antti P. Vepsäläinen
    Amir H. Karamlou
    John L. Orrell
    Akshunna S. Dogra
    Ben Loer
    Francisca Vasconcelos
    David K. Kim
    Alexander J. Melville
    Bethany M. Niedzielski
    Jonilyn L. Yoder
    Simon Gustavsson
    Joseph A. Formaggio
    Brent A. VanDevender
    William D. Oliver
    Nature, 2020, 584 : 551 - 556
  • [2] Author Correction: Impact of ionizing radiation on superconducting qubit coherence
    Antti P. Vepsäläinen
    Amir H. Karamlou
    John L. Orrell
    Akshunna S. Dogra
    Ben Loer
    Francisca Vasconcelos
    David K. Kim
    Alexander J. Melville
    Bethany M. Niedzielski
    Jonilyn L. Yoder
    Simon Gustavsson
    Joseph A. Formaggio
    Brent A. VanDevender
    William D. Oliver
    Nature, 2020, 586 : E8 - E8
  • [3] Impact of ionizing radiation on superconducting qubit coherence (vol 12, pg 812, 2020)
    Vepsalainen, Antti P.
    Karamlou, Amir H.
    Orrell, John L.
    Dogra, Akshunna S.
    Loer, Ben
    Vasconcelos, Francisca
    Kim, David K.
    Melville, Alexander J.
    Niedzielski, Bethany M.
    Yoder, Jonilyn L.
    Gustavsson, Simon
    Formaggio, Joseph A.
    VanDevender, Brent A.
    Oliver, William D.
    NATURE, 2020, 586 (7827) : E8 - E8
  • [4] Millisecond Coherence in a Superconducting Qubit
    Somoroff, Aaron
    Ficheux, Quentin
    Mencia, Raymond A.
    Xiong, Haonan
    Kuzmin, Roman
    Manucharyan, Vladimir E.
    PHYSICAL REVIEW LETTERS, 2023, 130 (26)
  • [5] Two-Level-System Dynamics in a Superconducting Qubit Due to Background Ionizing Radiation
    Thorbeck, Ted
    Eddins, Andrew
    Lauer, Isaac
    McClure, Douglas T.
    Carroll, Malcolm
    PRX QUANTUM, 2023, 4 (02):
  • [6] Superconducting qubit coherence metrics for device engineering
    McRae, Corey Rae H.
    Ramirez, Jorge
    Acharya, Manognya
    Pitten, John
    Lindstrom, Tobias
    Bennett, Doug
    2024 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CPEM 2024, 2024,
  • [7] High-Coherence Hybrid Superconducting Qubit
    Steffen, Matthias
    Kumar, Shwetank
    DiVincenzo, David P.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary Beth
    Ketchen, Mark B.
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [8] The effects of disorder in superconducting materials on qubit coherence
    Ran Gao
    Feng Wu
    Hantao Sun
    Jianjun Chen
    Hao Deng
    Xizheng Ma
    Xiaohe Miao
    Zhijun Song
    Xin Wan
    Fei Wang
    Tian Xia
    Make Ying
    Chao Zhang
    Yaoyun Shi
    Hui-Hai Zhao
    Chunqing Deng
    Nature Communications, 16 (1)
  • [9] Improved superconducting qubit coherence using titanium nitride
    Chang, Josephine B.
    Vissers, Michael R.
    Corcoles, Antonio D.
    Sandberg, Martin
    Gao, Jiansong
    Abraham, David W.
    Chow, Jerry M.
    Gambetta, Jay M.
    Rothwell, Mary Beth
    Keefe, George A.
    Steffen, Matthias
    Pappas, David P.
    APPLIED PHYSICS LETTERS, 2013, 103 (01)
  • [10] Quantum Sensing using a Qubit for the Detection of Ionizing Radiation
    Freeman, Matthew L.
    Skinner-Ramos, Such
    Lewis, Rupert M.
    Carr, Stephen M.
    HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS XXVI, 2024, 13151