Impact of ionizing radiation on superconducting qubit coherence

被引:150
|
作者
Vepsalainen, Antti P. [1 ]
Karamlou, Amir H. [1 ]
Orrell, John L. [2 ]
Dogra, Akshunna S. [1 ,4 ]
Loer, Ben [2 ]
Vasconcelos, Francisca [1 ]
Kim, David K. [3 ]
Melville, Alexander J. [3 ]
Niedzielski, Bethany M. [3 ]
Yoder, Jonilyn L. [3 ]
Gustavsson, Simon [1 ]
Formaggio, Joseph A. [1 ]
VanDevender, Brent A. [2 ]
Oliver, William D. [1 ,3 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[3] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02173 USA
[4] Harvard Univ, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
QUANTUM; STATES;
D O I
10.1038/s41586-020-2619-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ionizing radiation from environmental radioactivity and cosmic rays increases the density of broken Cooper pairs in superconducting qubits, reducing their coherence times, but can be partially mitigated by lead shielding. Technologies that rely on quantum bits (qubits) require long coherence times and high-fidelity operations(1). Superconducting qubits are one of the leading platforms for achieving these objectives(2,3). However, the coherence of superconducting qubits is affected by the breaking of Cooper pairs of electrons(4-6). The experimentally observed density of the broken Cooper pairs, referred to as quasiparticles, is orders of magnitude higher than the value predicted at equilibrium by the Bardeen-Cooper-Schrieffer theory of superconductivity(7-9). Previous work(10-12)has shown that infrared photons considerably increase the quasiparticle density, yet even in the best-isolated systems, it remains much higher(10)than expected, suggesting that another generation mechanism exists(13). Here we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference. The effect of ionizing radiation leads to an elevated quasiparticle density, which we predict would ultimately limit the coherence times of superconducting qubits of the type measured here to milliseconds. We further demonstrate that radiation shielding reduces the flux of ionizing radiation and thereby increases the energy-relaxation time. Albeit a small effect for today's qubits, reducing or mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.
引用
收藏
页码:551 / +
页数:18
相关论文
共 50 条
  • [21] Coherence enhancement in state transfer with seven-qubit superconducting processor
    Fan, Heng
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 5 - 5
  • [22] Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms
    Rigetti, Chad
    Gambetta, Jay M.
    Poletto, Stefano
    Plourde, B. L. T.
    Chow, Jerry M.
    Corcoles, A. D.
    Smolin, John A.
    Merkel, Seth T.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary B.
    Ketchen, Mark B.
    Steffen, M.
    PHYSICAL REVIEW B, 2012, 86 (10):
  • [23] The Impact of Ligand Field Symmetry on Molecular Qubit Coherence
    Kazmierczak, Nathanael P.
    Mirzoyan, Ruben
    Hadt, Ryan G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (42) : 17305 - 17315
  • [24] Superconducting Cavity Qubit with Tens of Milliseconds Single-Photon Coherence Time
    Milul, Ofir
    Guttel, Barkay
    Goldblatt, Uri
    Hazanov, Sergey
    Joshi, Lalit M.
    Chausovsky, Daniel
    Kahn, Nitzan
    Ciftyurek, Engin
    Lafont, Fabien
    Rosenblum, Serge
    PRX QUANTUM, 2023, 4 (03):
  • [25] Quantum correlations and thermal coherence in a two-superconducting charge qubit system
    Benzahra, Mourad
    Mansour, Mostafa
    Oumennana, Mansoura
    Elghaayda, Samira
    LASER PHYSICS, 2023, 33 (07)
  • [26] Submicrometer-scale temperature sensing using quantum coherence of a superconducting qubit
    Kakuyanagi, Kosuke
    Toida, Hiraku
    Abdurakhimov, Leonid, V
    Saito, Shiro
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [27] The impact of ionizing radiation on placental trophoblasts
    Kanter, D. J.
    O'Brien, M. B.
    Shi, X-H.
    Chu, T.
    Mishima, T.
    Beriwal, S.
    Epperly, M. W.
    Wipf, P.
    Greenberger, J. S.
    Sadovsky, Y.
    PLACENTA, 2014, 35 (02) : 85 - 91
  • [28] Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation
    Blencowe, M. P.
    Armour, A. D.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [29] Impact of Ionizing Radiation on the Cardiovascular System: A Review
    Puukila, Stephanie
    Lemon, Jennifer A.
    Lees, Simon J.
    Tai, T. C.
    Boreham, Douglas R.
    Khaper, Neelam
    RADIATION RESEARCH, 2017, 188 (04) : 539 - 546
  • [30] Echinococcus multilocularis: The impact of ionizing radiation on metacestodes
    Pohle, Sebastian
    Ernst, Raoul
    MacKenzie, Colin
    Spicher, Martin
    Romig, Thomas
    Hemphill, Andrew
    Gripp, Stephan
    EXPERIMENTAL PARASITOLOGY, 2011, 127 (01) : 127 - 134