Quantum Sensing using a Qubit for the Detection of Ionizing Radiation

被引:0
|
作者
Freeman, Matthew L. [1 ]
Skinner-Ramos, Such [1 ]
Lewis, Rupert M. [1 ]
Carr, Stephen M. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
qubit; sensing; radiation;
D O I
10.1117/12.3029915
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum sensing utilizes the inherent sensitivity of a quantum system to external stimuli. Our goal is to leverage this sensitivity to develop a quantum sensor designed for the detection of ionizing radiation. Here we report on the design, fabrication, and measurement of a new quantum device for hard x-ray and gamma-ray detection. Our quantum device is based on a superconducting quantum bit (qubit) with superconducting tunnel junctions as the core device elements. We describe our experimental investigation directed toward the detection metrics of energy resolution, dynamic range, and active area. In contrast to existing superconducting detectors, the active area per qubit may be much larger than the physical area of the tunnel junctions or the physical area of the qubit device, due to the sensitivity of quantum coherence to ionizing radiation deposition within a radius on the millimeter or centimeter scale. Our experimental design enables an ionizing radiation source at room temperature to be detected by our quantum sensor at low temperature.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Qubit readout and quantum sensing with pulses of quantum radiation
    Khanahmadi, Maryam
    Molmer, Klaus
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [2] Impact of ionizing radiation on superconducting qubit coherence
    Vepsalainen, Antti P.
    Karamlou, Amir H.
    Orrell, John L.
    Dogra, Akshunna S.
    Loer, Ben
    Vasconcelos, Francisca
    Kim, David K.
    Melville, Alexander J.
    Niedzielski, Bethany M.
    Yoder, Jonilyn L.
    Gustavsson, Simon
    Formaggio, Joseph A.
    VanDevender, Brent A.
    Oliver, William D.
    NATURE, 2020, 584 (7822) : 551 - +
  • [3] Impact of ionizing radiation on superconducting qubit coherence
    Antti P. Vepsäläinen
    Amir H. Karamlou
    John L. Orrell
    Akshunna S. Dogra
    Ben Loer
    Francisca Vasconcelos
    David K. Kim
    Alexander J. Melville
    Bethany M. Niedzielski
    Jonilyn L. Yoder
    Simon Gustavsson
    Joseph A. Formaggio
    Brent A. VanDevender
    William D. Oliver
    Nature, 2020, 584 : 551 - 556
  • [4] Perovskite Quantum-Dot-in-Host for Detection of Ionizing Radiation
    Williams, Richard T.
    Wolszczak, Weronika W.
    Yan, Xiaoheng
    Carroll, David L.
    ACS NANO, 2020, 14 (05) : 5161 - 5169
  • [5] Qubit state detection using the quantum Duffing oscillator
    Leyton, V.
    Thorwart, M.
    Peano, V.
    PHYSICAL REVIEW B, 2011, 84 (13)
  • [6] Review of using gallium nitride for ionizing radiation detection
    Wang, Jinghui
    Mulligan, Padhraic
    Brillson, Leonard
    Cao, Lei R.
    APPLIED PHYSICS REVIEWS, 2015, 2 (03):
  • [7] Water-dispersable colloidal quantum dots for the detection of ionizing radiation
    Lecavalier, Marie-Eve
    Goulet, Mathieu
    Allen, Claudine Ni.
    Beaulieu, Luc
    Lariviere, Dominic
    CHEMICAL COMMUNICATIONS, 2013, 49 (99) : 11629 - 11631
  • [8] Quantum sensing of photonic spin density using a single spin qubit
    Kalhor, Farid
    Yang, Li-Ping
    Bauer, Leif
    Jacob, Zubin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [9] Author Correction: Impact of ionizing radiation on superconducting qubit coherence
    Antti P. Vepsäläinen
    Amir H. Karamlou
    John L. Orrell
    Akshunna S. Dogra
    Ben Loer
    Francisca Vasconcelos
    David K. Kim
    Alexander J. Melville
    Bethany M. Niedzielski
    Jonilyn L. Yoder
    Simon Gustavsson
    Joseph A. Formaggio
    Brent A. VanDevender
    William D. Oliver
    Nature, 2020, 586 : E8 - E8
  • [10] Noise in detection of qubit states using a quantum point contact
    Oxtoby, N
    Sun, HB
    Wiseman, HM
    NOISE AND INFORMATION IN NANOELECTRONICS, SENSORS AND STANDARDS, 2003, 5115 : 218 - 227