Quantum Sensing using a Qubit for the Detection of Ionizing Radiation

被引:0
|
作者
Freeman, Matthew L. [1 ]
Skinner-Ramos, Such [1 ]
Lewis, Rupert M. [1 ]
Carr, Stephen M. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
qubit; sensing; radiation;
D O I
10.1117/12.3029915
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum sensing utilizes the inherent sensitivity of a quantum system to external stimuli. Our goal is to leverage this sensitivity to develop a quantum sensor designed for the detection of ionizing radiation. Here we report on the design, fabrication, and measurement of a new quantum device for hard x-ray and gamma-ray detection. Our quantum device is based on a superconducting quantum bit (qubit) with superconducting tunnel junctions as the core device elements. We describe our experimental investigation directed toward the detection metrics of energy resolution, dynamic range, and active area. In contrast to existing superconducting detectors, the active area per qubit may be much larger than the physical area of the tunnel junctions or the physical area of the qubit device, due to the sensitivity of quantum coherence to ionizing radiation deposition within a radius on the millimeter or centimeter scale. Our experimental design enables an ionizing radiation source at room temperature to be detected by our quantum sensor at low temperature.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Optimal Control for One-Qubit Quantum Sensing
    Poggiali, F.
    Cappellaro, P.
    Fabbri, N.
    PHYSICAL REVIEW X, 2018, 8 (02):
  • [32] Abatement of ionizing radiation for superconducting quantum devices
    Loer, B.
    Harrington, P. M.
    Archambault, B.
    Fuller, E.
    Pierson, B.
    Arnquist, I. J.
    Harouaka, K.
    Schlieder, T. D.
    Kim, D. K.
    Melville, A. J.
    Niedzielski, B. M.
    Yoder, J. L.
    Serniak, K.
    Oliver, W. D.
    Orrell, J. L.
    Bunker, R.
    Vandevender, B. A.
    Warner, M.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (09):
  • [33] Detection of quantum critical points by a probe qubit
    Zhang, Jingfu
    Peng, Xinhua
    Rajendran, Nageswaran
    Suter, Dieter
    PHYSICAL REVIEW LETTERS, 2008, 100 (10)
  • [34] Versatile Detection and Monitoring of Ionizing Radiation Treatment Using Radiation-Responsive Gel Nanosensors
    Pushpavanam, Karthik
    Dutta, Subhadeep
    Inamdar, Sahil
    Bista, Tomasz
    Sokolowski, Thaddeus
    Rapchak, Alek
    Sadeghi, Amir
    Sapareto, Stephen
    Rege, Kaushal
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) : 14997 - 15007
  • [35] Extracavity quantum vacuum radiation from a single qubit
    Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7, UMR 7162, 75205 Paris Cedex 13, France
    不详
    不详
    不详
    Phys Rev A, 5
  • [36] Extracavity quantum vacuum radiation from a single qubit
    De Liberato, S.
    Gerace, D.
    Carusotto, I.
    Ciuti, C.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [37] Visual detection using quantum dots sensing platforms
    Castro, Rafael C.
    Ribeiro, David S. M.
    Santos, Joao L. M.
    COORDINATION CHEMISTRY REVIEWS, 2021, 429
  • [38] RECONSTRUCTING PURE 14-QUBIT QUANTUM STATES IN THREE HOURS USING COMPRESSIVE SENSING
    Hu, Zhilin
    Li, Kezhi
    Cong, Shuang
    Tang, Yaru
    IFAC PAPERSONLINE, 2019, 52 (11): : 188 - 193
  • [39] A new method for remote detection of ionizing radiation using transient optical absorption
    Nomeika, Kazimieras
    Podlipskas, Zydrunas
    Tamosiunas, Vincas
    Jurkevicius, Jonas
    Alsamsam, Mohammad Nour
    Nargelas, Saulius
    Aleksiejunas, Ramunas
    Korjik, Mikhail
    Tamulaitis, Gintautas
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1029
  • [40] Dissipation-Based Quantum Sensing of Magnons with a Superconducting Qubit
    Wolski, S. P.
    Lachance-Quirion, D.
    Tabuchi, Y.
    Kono, S.
    Noguchi, A.
    Usami, K.
    Nakamura, Y.
    PHYSICAL REVIEW LETTERS, 2020, 125 (11)