Fast SGL Fourier transforms for scattered data

被引:0
|
作者
Wulker, Christian [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
关键词
Spherical Gauss-Laguerre basis functions; Generalized FFTS; Non-equispaced data; ALGORITHMS;
D O I
10.1016/j.acha.2019.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spherical Gauss-Laguerre (SGL) basis functions, i.e., normalized functions of the type L-n-l-1((l+1/2)) (r(2))r(l)Y(lm) (theta, phi), vertical bar m vertical bar <= l < n is an element of N, L-n-l-1((l+1/2)) being a generalized Laguerre polynomial, Y-lm a spherical harmonic, constitute an orthonormal polynom- ial basis of the space L-2 on R-3 with radial Gaussian (multivariate Hermite) weight exp(-r(2)). We have recently described fast Fourier transforms for the SGL basis functions based on an exact quadrature formula with certain grid points in R-3. In this paper, we present fast SGL Fourier transforms for scattered data. The idea is to employ well-known basal fast algorithms to determine a three-dimensional trigonometric polynomial that coincides with the bandlimited function of interest where the latter is to be evaluated. This trigonometric polynomial can then be evaluated efficiently using the well-known non-equispaced FFT (NFFT). We prove an error estimate for our algorithms and validate their practical suitability in extensive numerical experiments. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1107 / 1135
页数:29
相关论文
共 50 条
  • [31] HILBERT-TRANSFORMS USING FAST FOURIER-TRANSFORMS
    HENERY, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3415 - 3423
  • [32] Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity
    Vasudevan, Rama K.
    Belianinov, Alex
    Gianfrancesco, Anthony G.
    Baddorf, Arthur P.
    Tselev, Alexander
    Kalinin, Sergei V.
    Jesse, S.
    APPLIED PHYSICS LETTERS, 2015, 106 (09)
  • [33] Fast quantum nD Fourier and Radon transforms
    Labunets, VG
    Rundblad-Labunets, EV
    Astola, J
    PHOTONIC AND QUANTUM TECHNOLOGIES FOR AEROSPACE APPLICATIONS III, 2001, 4386 : 133 - 144
  • [34] RELATIONSHIP BETWEEN 2 FAST FOURIER TRANSFORMS
    GOOD, IJ
    IEEE TRANSACTIONS ON COMPUTERS, 1971, C 20 (03) : 310 - +
  • [35] FAST ALGORITHMS FOR THE DISCRETE FOURIER PREPROCESSING TRANSFORMS
    ERSOY, OK
    HU, NC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (04) : 744 - 757
  • [36] Generating fast Fourier transforms of solvable groups
    Clausen, A
    Müller, M
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (02) : 137 - 156
  • [37] Fast Fourier transforms for finite inverse semigroups
    Malandro, Martin E.
    JOURNAL OF ALGEBRA, 2010, 324 (02) : 282 - 312
  • [38] DISCRETE FOURIER-TRANSFORMS - FAST ALGORITHMS
    ZOLESIO, JL
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1985, 40 (9-10): : 495 - 507
  • [39] Use of wavelet and fast Fourier transforms in pharmacodynamics
    Mager, Donald E.
    Abernethy, Darrell R.
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2007, 321 (02): : 423 - 430
  • [40] A note on fast Fourier transforms for nonequispaced grids
    Steidl, G
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (3-4) : 337 - 352