Fast SGL Fourier transforms for scattered data

被引:0
|
作者
Wulker, Christian [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
关键词
Spherical Gauss-Laguerre basis functions; Generalized FFTS; Non-equispaced data; ALGORITHMS;
D O I
10.1016/j.acha.2019.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spherical Gauss-Laguerre (SGL) basis functions, i.e., normalized functions of the type L-n-l-1((l+1/2)) (r(2))r(l)Y(lm) (theta, phi), vertical bar m vertical bar <= l < n is an element of N, L-n-l-1((l+1/2)) being a generalized Laguerre polynomial, Y-lm a spherical harmonic, constitute an orthonormal polynom- ial basis of the space L-2 on R-3 with radial Gaussian (multivariate Hermite) weight exp(-r(2)). We have recently described fast Fourier transforms for the SGL basis functions based on an exact quadrature formula with certain grid points in R-3. In this paper, we present fast SGL Fourier transforms for scattered data. The idea is to employ well-known basal fast algorithms to determine a three-dimensional trigonometric polynomial that coincides with the bandlimited function of interest where the latter is to be evaluated. This trigonometric polynomial can then be evaluated efficiently using the well-known non-equispaced FFT (NFFT). We prove an error estimate for our algorithms and validate their practical suitability in extensive numerical experiments. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1107 / 1135
页数:29
相关论文
共 50 条
  • [21] FAST GENERALIZED FOURIER-TRANSFORMS
    CLAUSEN, M
    THEORETICAL COMPUTER SCIENCE, 1989, 67 (01) : 55 - 63
  • [22] FAST FOURIER TRANSFORMS WITHOUT SORTING
    UHRICH, ML
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1969, AU17 (02): : 170 - &
  • [23] Fast Numerical Nonlinear Fourier Transforms
    Wahls, Sander
    Poor, H. Vincent
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) : 6957 - 6974
  • [24] Fast Fourier transforms of piecewise polynomials
    Strain, John
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 : 346 - 369
  • [25] FAST COMPUTATION OF PARTIAL FOURIER TRANSFORMS
    Ying, Lexing
    Fomel, Sergey
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 110 - 124
  • [26] FAST FOURIER TRANSFORMS AND BUTLER MATRICES
    SHELTON, JP
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1968, 56 (03): : 350 - &
  • [27] DECONVOLUTION BY FAST FOURIER-TRANSFORMS
    HANGER, CC
    EMHARDT, JD
    HASELBY, KA
    WAGNER, WW
    FASEB JOURNAL, 1991, 5 (05): : A1430 - A1430
  • [28] A fast algorithm for fractional Fourier transforms
    Deng, XG
    Li, YP
    Fan, DY
    Qiu, Y
    OPTICS COMMUNICATIONS, 1997, 138 (4-6) : 270 - 274
  • [29] Fast algorithms for fractional Fourier transforms
    Creutzburg, R
    Rundblad, E
    Labunets, VG
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 383 - 387
  • [30] FAST FOURIER TRANSFORMS FOR THE ROOK MONOID
    Malandro, Martin
    Rockmore, Dan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (02) : 1009 - 1045