The q-Fibonacci Hyperbolic Functions

被引:0
|
作者
Guncan, A. [1 ]
Erbil, Y. [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
Fibonacci numbers; Fibonacci hyperbolic functions; q-calculus; q-analogue;
D O I
10.1063/1.4756299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2005 Stakhov and Rozin introduced a new class of hyperbolic functions which is called Fibonacci hyperbolic functions. In this paper, we study q-analogue of Fibonacci hyperbolic functions. These functions can be regarded as q extensions of classical hyperbolic functions. We introduce the q-analogue of classical Golden ratio as follow phi(q) = 1+root 1+4q(n-2)/2 n >= 2. Making use of this q-analogue of the Golden ratio, we defined sinF(q)h(x) and cosF(q)h(x) functions. We investigated some properties and gave some relationships between these functions.
引用
收藏
页码:946 / 949
页数:4
相关论文
共 50 条
  • [41] HYPERBOLIC VOLUMES OF FIBONACCI MANIFOLDS
    VESNIN, AY
    MEDNYKH, AD
    SIBERIAN MATHEMATICAL JOURNAL, 1995, 36 (02) : 235 - 245
  • [42] Generalized Fibonacci functions and sequences of generalized Fibonacci functions
    Lee, GY
    Kim, JS
    Cho, TH
    FIBONACCI QUARTERLY, 2003, 41 (02): : 108 - 121
  • [44] HUSIMI Q-FUNCTIONS ATTACHED TO HYPERBOLIC LANDAU LEVELS
    Mouayn, Z.
    Chhaiba, H.
    Kassogue, H.
    Kikodio, P. K.
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 89 (01) : 27 - 57
  • [45] COMPLEX AND HYPERBOLIC FIBONACCI NUMBERS AND PHYLLOTAXIS
    Petoukhov, S. V.
    Petukhova, E. S.
    Svirin, V. I.
    SYMMETRY-CULTURE AND SCIENCE, 2022, 33 (03): : 209 - 220
  • [46] On dual hyperbolic generalized Fibonacci numbers
    Soykan, Yuksel
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 62 - 78
  • [47] Circular-hyperbolic Fibonacci quaternions
    Aydin, Fugen Torunbalci
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (02) : 167 - 176
  • [48] A Sum of Hyperbolic Cosines of Fibonacci Numbers
    Ohtsuka, Hideyuki
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (02): : 185 - 185
  • [49] Fibonacci words, hyperbolic tilings and grossone
    Margenstern, Maurice
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 21 (1-3) : 3 - 11
  • [50] On dual hyperbolic generalized Fibonacci numbers
    Yüksel Soykan
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 62 - 78