The q-Fibonacci Hyperbolic Functions

被引:0
|
作者
Guncan, A. [1 ]
Erbil, Y. [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
Fibonacci numbers; Fibonacci hyperbolic functions; q-calculus; q-analogue;
D O I
10.1063/1.4756299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2005 Stakhov and Rozin introduced a new class of hyperbolic functions which is called Fibonacci hyperbolic functions. In this paper, we study q-analogue of Fibonacci hyperbolic functions. These functions can be regarded as q extensions of classical hyperbolic functions. We introduce the q-analogue of classical Golden ratio as follow phi(q) = 1+root 1+4q(n-2)/2 n >= 2. Making use of this q-analogue of the Golden ratio, we defined sinF(q)h(x) and cosF(q)h(x) functions. We investigated some properties and gave some relationships between these functions.
引用
收藏
页码:946 / 949
页数:4
相关论文
共 50 条
  • [31] Embed-Solitons in the Context of Functions of Symmetric Hyperbolic Fibonacci
    Youssif, Mokhtar. Y.
    Helal, Khadeeja A. A.
    Juma, Manal Yagoub Ahmed
    Elhag, Amna E.
    Elamin, Abd Elmotaleb A. M. A.
    Aiyashi, Mohammed A.
    Abo-Dahab, Sayed M.
    SYMMETRY-BASEL, 2023, 15 (08):
  • [32] The q-pell Hyperbolic Functions
    Guncan, A.
    Akduman, S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 942 - 945
  • [33] On the improvement of q-deformed hyperbolic functions
    Morales, J.
    Pena, J. J.
    Garcia-Ravelo, J.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (02) : 303 - 314
  • [34] On the improvement of q-deformed hyperbolic functions
    J. Morales
    J. J. Peña
    J. García-Ravelo
    Journal of Mathematical Chemistry, 2021, 59 : 303 - 314
  • [35] On a q-generalization of circular and hyperbolic functions
    Borges, EP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5281 - 5288
  • [36] On Fibonacci functions with Fibonacci numbers
    Han, Jeong Soon
    Kim, Hee Sik
    Neggers, Joseph
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [37] On Fibonacci functions with Fibonacci numbers
    Jeong Soon Han
    Hee Sik Kim
    Joseph Neggers
    Advances in Difference Equations, 2012
  • [38] ASSOCIATED HYPERBOLIC AND FIBONACCI IDENTITIES
    EHRHART, E
    FIBONACCI QUARTERLY, 1983, 21 (02): : 87 - 96
  • [39] Isometries of hyperbolic Fibonacci manifolds
    Vesnin, AY
    Rasskazov, AA
    SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (01) : 9 - 22
  • [40] Isometries of hyperbolic Fibonacci manifolds
    A. Yu. Vesnin
    A. A. Rasskazov
    Siberian Mathematical Journal, 1999, 40 : 9 - 22