The q-Fibonacci Hyperbolic Functions

被引:0
|
作者
Guncan, A. [1 ]
Erbil, Y. [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
Fibonacci numbers; Fibonacci hyperbolic functions; q-calculus; q-analogue;
D O I
10.1063/1.4756299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2005 Stakhov and Rozin introduced a new class of hyperbolic functions which is called Fibonacci hyperbolic functions. In this paper, we study q-analogue of Fibonacci hyperbolic functions. These functions can be regarded as q extensions of classical hyperbolic functions. We introduce the q-analogue of classical Golden ratio as follow phi(q) = 1+root 1+4q(n-2)/2 n >= 2. Making use of this q-analogue of the Golden ratio, we defined sinF(q)h(x) and cosF(q)h(x) functions. We investigated some properties and gave some relationships between these functions.
引用
收藏
页码:946 / 949
页数:4
相关论文
共 50 条
  • [1] Generalized q-Fibonacci numbers
    Munarini, E
    FIBONACCI QUARTERLY, 2005, 43 (03): : 234 - 242
  • [2] q-fibonacci polynomials
    Cigler, J
    FIBONACCI QUARTERLY, 2003, 41 (01): : 31 - 40
  • [3] q-Fibonacci statistical convergence
    Atabey, Koray Ibrahim
    Cinar, Muhammed
    Et, Mikail
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [4] NEW FAMILIES OF GENERATING FUNCTIONS FOR q-FIBONACCI AND THE RELATED POLYNOMIALS
    Kizilates, Can
    Cekim, Bayram
    ARS COMBINATORIA, 2018, 136 : 397 - 404
  • [5] Permutation Statistics and q-Fibonacci Numbers
    Goyt, Adam M.
    Mathisen, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [6] FIBONACCI NOTES .4. Q-FIBONACCI POLYNOMIALS
    CARLITZ, L
    FIBONACCI QUARTERLY, 1975, 13 (02): : 97 - 102
  • [7] Nondecreasing Dyck paths and q-Fibonacci numbers
    Barcucci, E
    DelLungo, A
    Fezzi, S
    Pinzani, R
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 211 - 217
  • [8] A new class of q-Fibonacci polynomials
    Cigler, J
    ELECTRONIC JOURNAL OF COMBINATORICS, 2003, 10 (01):
  • [9] Nondecreasing Dyck paths and q-fibonacci numbers
    Dipto. di Sistemi e Informatica, Via Lombroso 6/17, Firenze, Italy
    Discrete Math, 1-3 (211-217):
  • [10] Set partition statistics and q-Fibonacci numbers
    Goyt, Adam M.
    Sagan, Bruce E.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 230 - 245