Versatile and Resilient Hydrogen-Bonded Host Frameworks

被引:180
|
作者
Adachi, Takuji
Ward, Michael D. [1 ]
机构
[1] NYU, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
ORGANIC FRAMEWORK; GUEST MOLECULES; SEPARATION; ORIENTATION; NETWORKS; CHARGE;
D O I
10.1021/acs.accounts.6b00360
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CONSPECTUS: Low-density molecular host frameworks, whether equipped with persistent molecular-scale pores or virtual pores that are sustainable only when occupied by guest molecules, have emerged as a promising class of materials owing to the ability to tailor the size, geometry, and chemical character of their free space through the versatility of organic synthesis. As such, molecular frameworks are promising candidates for storage, separations of commodity and fine chemicals, heterogeneous catalysis, and optical and electronic materials. Frameworks assembled through hydrogen bonds, though generally not stable toward collapse in the absence of guests, promise significant chemical and structural diversity, with pores that can be tailored for a wide range of guest molecules. The utility of these frameworks, however, depends on the resilience of n-dimensional hydrogen-bonded motifs that serve as reliable building blocks so that the molecular constituents can be manipulated without disruption of the anticipated global solid-state architecture. Though many hydrogen-bonded frameworks have been reported, few exist that are amenable to systematic modification, thus limiting the design of functional materials. This Account reviews discoveries in our laboratory during the past decade related to a series of host frameworks based on guanidinium cations and interchangeable organosulfonate anions, in which the 3-fold symmetry and hydrogen-bonding complementarity of these ions prompt the formation of a two-dimensional (2-D) quasi-hexagonal hydrogen-bonding network that has proven to be remarkably resilient toward the introduction of a wide range of organic pendant groups attached to the sulfonate. Since an earlier report in this journal that focused primarily on organodisulfonate host frameworks with lamellar architectures, this unusually persistent network has afforded an unparalleled range of framework architectures and hundreds of new crystalline materials with predictable solid-state architectures. These range from the surprising discovery of inclusion compounds in organomonosulfonates (GMS), as well as organodisulfonates (GDS), structural isomerism reminiscent of microstructures observed in soft matter, a retrosynthetic approach to the synthesis of polar crystals, separation of molecular isomers, storage of unstable molecules, formation of a zeolite-like hydrogen-bonded framework, and postsynthetic pathways to inclusion compounds through reversible guest swapping in flexible GS frameworks. Collectively, the examples described in this Account illustrate the potential for hydrogen-bonded frameworks in the design of molecular materials, the prediction of solid-state architecture from simple empirical parameters, and the importance of design principles based on robust high dimensional networks. These and other emerging hydrogen-bonded frameworks promise new advanced materials that capitalize fully on the ability of materials chemists to manipulate solid-state structure through molecular design.
引用
收藏
页码:2669 / 2679
页数:11
相关论文
共 50 条
  • [41] Hydrogen-Bonded Organic Frameworks: Structural Design and Emerging Applications
    Ding, Xiaojun
    Xie, Yi
    Gao, Qiang
    Luo, Yilin
    Chen, Jing
    Ye, Gang
    CHEMPHYSCHEM, 2023, 24 (07)
  • [42] Biomimetic chiral hydrogen-bonded organic-inorganic frameworks
    Jun Guo
    Yulong Duan
    Yunling Jia
    Zelong Zhao
    Xiaoqing Gao
    Pai Liu
    Fangfang Li
    Hongli Chen
    Yutong Ye
    Yujiao Liu
    Meiting Zhao
    Zhiyong Tang
    Yi Liu
    Nature Communications, 15 (1)
  • [43] Chiral discrimination in low-density hydrogen-bonded frameworks
    Custelcean, R
    Ward, MD
    CRYSTAL GROWTH & DESIGN, 2005, 5 (06) : 2277 - 2287
  • [44] Hydrogen-bonded organic frameworks of twisted polycyclic aromatic hydrocarbon
    Suzuki, Yuto
    Tohnai, Norimitsu
    Saeki, Akinori
    Hisaki, Ichiro
    CHEMICAL COMMUNICATIONS, 2020, 56 (87) : 13369 - 13372
  • [45] Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks
    Guosheng Chen
    Siming Huang
    Xiaomin Ma
    Rongwei He
    Gangfeng Ouyang
    Nature Protocols, 2023, 18 : 2032 - 2050
  • [46] Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials
    Wang, Bin
    Lin, Rui-Biao
    Zhang, Zhangjing
    Xiang, Shengchang
    Chen, Banglin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (34) : 14399 - 14416
  • [47] Research on photoelectrochemical sensing applications of hydrogen-bonded organic frameworks
    Mao, Chunling
    Dai, Ronghua
    Zhao, Longshan
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1303
  • [48] Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges
    Lin Zu-Jin
    Cao Rong
    ACTA CHIMICA SINICA, 2020, 78 (12) : 1309 - 1335
  • [49] Comparing hydrogen-bonded organic frameworks and metal-organic frameworks for biosensor applications
    Rabiee, Navid
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2025, 187
  • [50] Interconversion and functional composites of metal-organic frameworks and hydrogen-bonded organic frameworks
    Hu, Siwen
    Zhao, He
    Liang, Meng
    Hao, Jingjun
    Xue, Pengchong
    CHEMICAL COMMUNICATIONS, 2024, 60 (63) : 8140 - 8152