Versatile and Resilient Hydrogen-Bonded Host Frameworks

被引:180
|
作者
Adachi, Takuji
Ward, Michael D. [1 ]
机构
[1] NYU, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
ORGANIC FRAMEWORK; GUEST MOLECULES; SEPARATION; ORIENTATION; NETWORKS; CHARGE;
D O I
10.1021/acs.accounts.6b00360
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CONSPECTUS: Low-density molecular host frameworks, whether equipped with persistent molecular-scale pores or virtual pores that are sustainable only when occupied by guest molecules, have emerged as a promising class of materials owing to the ability to tailor the size, geometry, and chemical character of their free space through the versatility of organic synthesis. As such, molecular frameworks are promising candidates for storage, separations of commodity and fine chemicals, heterogeneous catalysis, and optical and electronic materials. Frameworks assembled through hydrogen bonds, though generally not stable toward collapse in the absence of guests, promise significant chemical and structural diversity, with pores that can be tailored for a wide range of guest molecules. The utility of these frameworks, however, depends on the resilience of n-dimensional hydrogen-bonded motifs that serve as reliable building blocks so that the molecular constituents can be manipulated without disruption of the anticipated global solid-state architecture. Though many hydrogen-bonded frameworks have been reported, few exist that are amenable to systematic modification, thus limiting the design of functional materials. This Account reviews discoveries in our laboratory during the past decade related to a series of host frameworks based on guanidinium cations and interchangeable organosulfonate anions, in which the 3-fold symmetry and hydrogen-bonding complementarity of these ions prompt the formation of a two-dimensional (2-D) quasi-hexagonal hydrogen-bonding network that has proven to be remarkably resilient toward the introduction of a wide range of organic pendant groups attached to the sulfonate. Since an earlier report in this journal that focused primarily on organodisulfonate host frameworks with lamellar architectures, this unusually persistent network has afforded an unparalleled range of framework architectures and hundreds of new crystalline materials with predictable solid-state architectures. These range from the surprising discovery of inclusion compounds in organomonosulfonates (GMS), as well as organodisulfonates (GDS), structural isomerism reminiscent of microstructures observed in soft matter, a retrosynthetic approach to the synthesis of polar crystals, separation of molecular isomers, storage of unstable molecules, formation of a zeolite-like hydrogen-bonded framework, and postsynthetic pathways to inclusion compounds through reversible guest swapping in flexible GS frameworks. Collectively, the examples described in this Account illustrate the potential for hydrogen-bonded frameworks in the design of molecular materials, the prediction of solid-state architecture from simple empirical parameters, and the importance of design principles based on robust high dimensional networks. These and other emerging hydrogen-bonded frameworks promise new advanced materials that capitalize fully on the ability of materials chemists to manipulate solid-state structure through molecular design.
引用
收藏
页码:2669 / 2679
页数:11
相关论文
共 50 条
  • [31] Hydrogen-Bonded Organic Frameworks as an Appealing Platform for Luminescent Sensing
    Xiong, Zhile
    Xiang, Shengchang
    Lv, Yuanchao
    Chen, Banglin
    Zhang, Zhangjing
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (26)
  • [32] Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity
    Hisaki, Ichiro
    Xin, Chen
    Takahashi, Kiyonori
    Nakamura, Takayoshi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) : 11160 - 11170
  • [33] Biomimetic chiral hydrogen-bonded organic-inorganic frameworks
    Guo, Jun
    Duan, Yulong
    Jia, Yunling
    Zhao, Zelong
    Gao, Xiaoqing
    Liu, Pai
    Li, Fangfang
    Chen, Hongli
    Ye, Yutong
    Liu, Yujiao
    Zhao, Meiting
    Tang, Zhiyong
    Liu, Yi
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [34] Hydrogen-bonded organic frameworks: new horizons in biomedical applications
    Yu, Dongqin
    Zhang, Haochen
    Ren, Jinsong
    Qu, Xiaogang
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (21) : 7504 - 7523
  • [35] ROY confined in hydrogen-bonded frameworks: coercing conformation of a chromophore
    Tang, Sishuang
    Yusov, Anna
    Li, Yuantao
    Tan, Melissa
    Hao, Yunhui
    Li, Zongzhe
    Chen, Yu-Sheng
    Hu, Chunhua T.
    Kahr, Bart
    Ward, Michael D.
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (08) : 2378 - 2383
  • [36] Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications
    Liu, Ying
    Chang, Ganggang
    Zheng, Fang
    Chen, Lihang
    Yang, Qiwei
    Ren, Qilong
    Bao, Zongbi
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (14)
  • [37] Regulating the Architectures of Hydrogen-Bonded Frameworks through Topological Enforcement
    Liu, Yuzhou
    Xiao, Wenchang
    Yi, Jin Ju
    Hu, Chunhua
    Park, Sang-Jae
    Ward, Michael D.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (09) : 3386 - 3392
  • [38] Functional Composite Materials Based on Hydrogen-Bonded Organic Frameworks
    Guo, Yixuan
    Wang, Chen
    Mo, Guanglai
    Wang, Yao
    Song, Xiyu
    Li, Peng
    CRYSTAL GROWTH & DESIGN, 2023, 23 (11) : 7635 - 7646
  • [39] Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks
    Chen, Guosheng
    Huang, Siming
    Ma, Xiaomin
    He, Rongwei
    Ouyang, Gangfeng
    NATURE PROTOCOLS, 2023, 18 (07) : 2032 - +
  • [40] Hydrogen-Bonded Frameworks of Mercury(II) Complexes with Pyridinedicarboxylic Acids
    Soldin, Zeljka
    Kukovec, Boris-Marko
    Matkovic-Calogovic, Dubravka
    Popovic, Zora
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2018, 71 (06) : 455 - 462