A Quasi-optimal Spectral Method for Turbulent Flows in Non-periodic Geometries

被引:0
|
作者
Auteri, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, Milan, Italy
来源
PROGRESS IN TURBULENCE V | 2014年 / 149卷
关键词
D O I
10.1007/978-3-319-01860-7_37
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, a quasi-optimal spectral solver for the incompressible Navier-Stokes equations is proposed which is able to treat nonperiodic geometries by construction. The method is based on a fractional-step time discretization recently proposed by Guermond andMinev. A Chebyshev-Galerkin spatial discretization is adopted to satisfy the LBB condition while maintaining an efficient treatment of the linear and nonlinear, dealiased, terms. A careful construction of the algorithm allows the computational complexity to grow as CN3 logN in 3D.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [41] Universal image systems for non-periodic and periodic Stokes flows above a no-slip wall
    Yan, Wen
    Shelley, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 263 - 270
  • [42] The method of analytical design of quasi-optimal control systems with polynomial nonlinearities
    Lovchakov, V. I.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (06) : 979 - 992
  • [43] The Quasi-Optimal Radial Basis Function Collocation Method: A Technical Note
    Zhang, Juan
    Sun, Mei
    Hou, Enran
    Ma, Zhaoxing
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [44] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE METHOD FOR THE INTEGRAL FRACTIONAL LAPLACIAN
    Faustmann, Markus
    Melenk, Jens Markus
    Praetorius, Dirk
    MATHEMATICS OF COMPUTATION, 2021, 90 (330) : 1557 - 1587
  • [45] Quasi-periodic and non-periodic waves in (2+1)-dimensional nonlinear systems
    Tang, XY
    Lou, SY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (04) : 583 - 588
  • [46] A quasi-optimal stacking method for up-the-ramp readout images
    Guanghuan Wang
    Hu Zhan
    Zun Luo
    Chengqi Liu
    Youhua Xu
    Chun Lin
    Yanfeng Wei
    Wenlong Fan
    Astronomical Techniques and Instruments, 2025, 2 (02) : 119 - 126
  • [47] Design Method for Quasi-Optimal Multiband Branch-Line Couplers
    Piazzon, Luca
    Saad, Paul
    Colantonio, Paolo
    Giannini, Franco
    Andersson, Kristoffer
    Fager, Christian
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2014, 24 (01) : 117 - 129
  • [48] CONVERGENCE AND QUASI-OPTIMAL COMPLEXITY OF A SIMPLE ADAPTIVE FINITE ELEMENT METHOD
    Becker, Roland
    Mao, Shipeng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06): : 1203 - 1219
  • [49] Quasi-periodic and Non-periodic Waves in (2+1)-Dimensional Nonlinear Systems
    TANG Xiao-Yan
    LOU Sen--Yue Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (10) : 583 - 588
  • [50] A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY
    Becker, Roland
    Mao, Shipeng
    Shi, Zhongci
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4639 - 4659