A Quasi-optimal Spectral Method for Turbulent Flows in Non-periodic Geometries

被引:0
|
作者
Auteri, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, Milan, Italy
来源
PROGRESS IN TURBULENCE V | 2014年 / 149卷
关键词
D O I
10.1007/978-3-319-01860-7_37
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, a quasi-optimal spectral solver for the incompressible Navier-Stokes equations is proposed which is able to treat nonperiodic geometries by construction. The method is based on a fractional-step time discretization recently proposed by Guermond andMinev. A Chebyshev-Galerkin spatial discretization is adopted to satisfy the LBB condition while maintaining an efficient treatment of the linear and nonlinear, dealiased, terms. A careful construction of the algorithm allows the computational complexity to grow as CN3 logN in 3D.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [31] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [32] A New Method for Quasi-Optimal Design of Water Distribution Networks
    Akbar Shirzad
    Massoud Tabesh
    Moharram Heidarzadeh
    Water Resources Management, 2015, 29 : 5295 - 5308
  • [33] A New Method for Quasi-Optimal Design of Water Distribution Networks
    Shirzad, Akbar
    Tabesh, Massoud
    Heidarzadeh, Moharram
    WATER RESOURCES MANAGEMENT, 2015, 29 (14) : 5295 - 5308
  • [34] New classes of periodic and non-periodic exact solutions for Newtonian and non-Newtonian fluid flows
    Joseph, Subin P.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2022, 180
  • [35] A METHOD OF DETECTING A SIGNAL IN NOISE BY NON-PERIODIC SAMPLING
    LACAZE, B
    HOFFMANN, JC
    CSILLAG, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (23): : 1414 - &
  • [36] ON THE THEORY OF A NON-PERIODIC QUASI-LATTICE ASSOCIATED WITH THE ICOSAHEDRAL GROUP
    KRAMER, P
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1985, 40 (08): : 775 - 788
  • [37] QUASI-OPTIMAL DEMODULATION OF PM SIGNAL IN NON-GAUSSIAN NOISE
    BAKHAREV, VA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1987, 30 (03): : 86 - 88
  • [38] Envelope enrichment method for homogenization of non-periodic structures
    Vazeille, Florian
    Lebel, Louis Laberge
    COMPOSITE STRUCTURES, 2024, 329
  • [39] Nonlinear and non-Gaussian state estimation: A quasi-optimal estimator
    Tanizaki, H
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (12) : 2805 - 2834
  • [40] Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses
    Musolino, MC
    Loughlin, PJ
    Sparto, PJ
    Redfern, MS
    GAIT & POSTURE, 2006, 23 (02) : 180 - 188