Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment

被引:34
|
作者
Frosi, Gabriella [1 ]
Barros, Vanessa Andrade [1 ]
Oliveira, Marciel Teixeira [1 ]
Santos, Mariana [1 ]
Ramos, Diego Gomes [1 ]
Maia, Leonor Costa [2 ]
Santos, Mauro Guida [1 ]
机构
[1] Univ Fed Pernambuco, Dept Bot, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Micol, BR-50670901 Recife, PE, Brazil
关键词
Caatinga; chlorophyll fluorescence; gas exchange; leaf biochemistry; mycorrhiza; phosphorus; DROUGHT STRESS; MAIZE PLANTS; PHOTOSYNTHESIS; SYMBIOSIS; GROWTH; NITROGEN; TOLERANCE; SALINITY; ROOT; MECHANISMS;
D O I
10.1093/treephys/tpx105
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Salinity may limit plant growth especially in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) and the supply of inorganic phosphorus (Pi) could alleviate the negative effects of such stress by improvement in stomatal conductance, photosynthesis and biomass. The aim of this study is to evaluate the ecophysiological performance of Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis (Fabaceae) in a greenhouse under salinity conditions in combination with the supply of AMF and leaf Pi. The experiment was conducted in a factorial design considering two levels of salinity (+ NaCl and -NaCl), two levels of AMF (+ AMF and -AMF) and two levels of leaf Pi supply (+ Pi and -Pi). The variables gas exchange, leaf primary metabolism, dry biomass and nutrients were measured. Plants with AMF under non-saline conditions presented a high photosynthesis and biomass. In saline conditions, AMF promoted lower decrease in photosynthesis, high shoot dry matter and low content of leaf and root Na+ and Cl-. Plants treated with leaf Pi increased biomass and photosynthetic pigments under both conditions and accumulated more Cl-in shoots under salinity conditions. When combined, AMF * Pi increased photosynthesis only in non-saline conditions. Plants under salinity conditions without AMF and Pi had higher decreases in gas exchange and high content of Cl-in roots. Therefore, C. pyramidale plants improved their metabolism under both growth conditions in the presence of AMF, Pi or a combination of both. However, the greatest increases in growth and tolerance to salinity occurred in the isolated presence of AMF.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [42] Influence of arbuscular mycorrhizal fungi inoculum produced on-farm and phosphorus on growth and nutrition of native woody plant species from Brazil
    Goetten, Luis Claudio
    Moretto, Geraldo
    Stuermer, Sidney Luiz
    ACTA BOTANICA BRASILICA, 2016, 30 (01) : 9 - 16
  • [43] Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment
    Zai, Xue-Ming
    Fan, Jun-Jun
    Hao, Zhen-Ping
    Liu, Xing-Man
    Zhang, Wang-Xiang
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [44] Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment
    Xue-Ming Zai
    Jun-Jun Fan
    Zhen-Ping Hao
    Xing-Man Liu
    Wang-Xiang Zhang
    Scientific Reports, 11
  • [45] Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar On the Growth of Pepper (Capsicum annuum L.) Under Salt Stress
    Hasret Gunes
    Semra Demir
    Ceknas Erdinc
    Mehmet Alp Furan
    Gesunde Pflanzen, 2023, 75 : 2669 - 2681
  • [46] INTERACTIVE EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI (AMF) AND PLANT GROWTH PROMOTING BACTERIA (PGPB) ON THE ALLEVIATION OF SALT STRESS IN WHEAT
    Sabah, Faiz us
    Bano, Asghari
    Bano, Asma
    Mufti, Rabia
    PAKISTAN JOURNAL OF BOTANY, 2025, 57 (02) : 425 - 432
  • [47] Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar On the Growth of Pepper (Capsicum annum L.) Under Salt Stress
    Gunes, Hasret
    Demir, Semra
    Erdinc, Ceknas
    Furan, Mehmet Alp
    GESUNDE PFLANZEN, 2023, 75 (06): : 2669 - 2681
  • [48] Effects of arbuscular mycorrhizal (AM) fungi Glomus mosseae on characteristics of leaf development of Paeonia suffruticosa under salt stress
    Guo Shaoxia
    Han Tingting
    Liu Runjin
    AFRICAN JOURNAL OF MICROBIOLOGY RESEARCH, 2011, 5 (06): : 714 - 719
  • [49] Application of arbuscular mycorrhizal fungi alone or combined with different composts to improve physiological and biochemical attributes related to drought stress tolerance in quinoa
    Wissal Benaffari
    Abderrahim Boutasknit
    Mohamed Anli
    Nizar Nasri
    Abdelilah Meddich
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 4250 - 4266
  • [50] Application of arbuscular mycorrhizal fungi alone or combined with different composts to improve physiological and biochemical attributes related to drought stress tolerance in quinoa
    Benaffari, Wissal
    Boutasknit, Abderrahim
    Anli, Mohamed
    Nasri, Nizar
    Meddich, Abdelilah
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (03) : 4250 - 4266